Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Georgiades E, Lowe MJS, Craster RV, 2024,

    Computing leaky Lamb waves for waveguides between elastic half-spaces using spectral collocation

    , Journal of the Acoustical Society of America, Vol: 155, Pages: 629-639, ISSN: 0001-4966

    In non-destructive evaluation guided wave inspections, the elastic structure to be inspected is often embedded within other elastic media and the ensuing leaky waves are complex and non-trivial to compute; we consider the canonical example of an elastic waveguide surrounded by other elastic materials that demonstrates the fundamental issues with calculating the leaky waves in such systems. Due to the complex wavenumber solutions required to represent them, leaky waves pose significant challenges to existing numerical methods, with methods that spatially discretise the field to retrieve them suffering from the exponential growth of their amplitude far into the surrounding media. We present a spectral collocation method yielding an accurate and efficient identification of these modes, leaking into elastic half-spaces. We discretise the elastic domains and, depending on the exterior bulk wavespeeds, select appropriate mappings of the discretised domain to complex paths, in which the numerical solution decays and the physics of the problem are preserved. By iterating through all possible radiation cases, the full set of dispersion and attenuation curves are successfully retrieved and validated, where possible, against the commercially available software disperse. As an independent validation, dispersion curves are obtained from finite element simulations of time-dependent waves using Fourier analysis.

  • Journal article
    Hall TAG, Theodoridis K, Kechagias S, Kohli N, Denonville C, Rørvik PM, Cegla F, van Arkel RJet al., 2023,

    Electromechanical and biological evaluations of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 as a lead-free piezoceramic for implantable bioelectronics

    , Biomaterials Advances, Vol: 154, Pages: 1-11, ISSN: 2772-9508

    Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing.

  • Journal article
    Chen Y, Yang Z, Bai X, Zou F, Cegla FBet al., 2023,

    High-precision in situ 3D ultrasonic imaging of localized corrosion-induced material morphological changes

    , npj Materials Degradation, Vol: 7, ISSN: 2397-2106

    We present an ultrasonic research technique that can carry out in situ, direct monitoring of the 3D morphologies of corrosion substrates. The technique has a customizable lateral resolution, an ultra-high axial resolution of 100 nm, and an experimentally proven measurement accuracy. In using the technique to monitor the localized corrosion processes of carbon steel under constant DCs, it was observed that during each of the experiments conducted in alkaline environments, iron dissolution accelerated for a certain period of time and then slowed down. Based on the various features of the ultrasonic signals acquired and the XRD spectra of the corrosion products obtained, it was deduced that an increase in iron dissolution rate as such was accompanied by the depositing of solid corrosion products onto the substrate used and driven by the formation of Fe3O4, which consumed electrons. After a while, the corrosion product layer collapsed and the formation of Fe3O4 was halted.

  • Journal article
    Huang M, Cegla F, Lan B, 2023,

    Stiffness matrix method for modelling wave propagation in arbitrary multilayers

    , International Journal of Engineering Science, Vol: 190, ISSN: 0020-7225

    Natural and engineered media usually involve combinations of solid, fluid and porous layers, and accurate and stable modelling of wave propagation in such complex multilayered media is fundamental to evaluating their properties with wave-based methods. Here we present a general stiffness matrix method for modelling waves in arbitrary multilayers. The method first formulates stiffness matrices for individual layers based on the governing wave equations for fluids and solids, and the Biot theory for porous materials. Then it utilises the boundary conditions considered at layer interfaces to assemble the layer matrices into a global system of equations, to obtain solutions for reflection and transmission coefficients at any incidence. Its advantage over existing methods is manifested by its unconditional computational stability, and its validity is proved by experimental validations on single solid sheets, porous layers, and porous-solid-porous battery electrodes. This establishes a powerful theoretical platform that allows us to develop advanced wave-based methods to quantitatively characterise properties of the layers, especially for layers of porous materials.

  • Journal article
    Sarris G, Haslinger SG, Huthwaite P, Nagy PB, Lowe MJSet al., 2023,

    Attenuation of Rayleigh waves due to three-dimensional surface roughness: a comprehensive numerical evaluation

    , Journal of the Acoustical Society of America, Vol: 154, Pages: 808-818, ISSN: 0001-4966

    The phenomenon of Rayleigh wave attenuation due to surface roughness has been well studied theoretically in the literature. Three scattering regimes describing it have been identified-the Rayleigh (long wavelength), stochastic (medium wavelength), and geometric (short wavelength)-with the attenuation coefficient exhibiting a different behavior in each. Here, in an extension to our previous work, we gain further insight with regard to the existing theory, in three dimensions, using finite element (FE) modeling, under a unified approach, where the same FE modeling techniques are used regardless of the scattering regime. We demonstrate good agreement between our FE results and the theory in all scattering regimes. Additionally, following this demonstration, we extend the results to cases that lie outside the limits of validity of the theory.

  • Journal article
    Wei T, Fantetti A, Cegla F, Schwingshackl Cet al., 2023,

    An optical method to monitor transparent contact interfaces during high frequency shear vibration cycles

    , Wear, Vol: 524-525, Pages: 1-12, ISSN: 0043-1648

    Contacting interfaces provide frictional damping in jointed structures subjected to high dynamic loads. Predicting this frictional damping during vibration cycles is highly important since it strongly affects the dynamic response of the assembly and hence the lifetime of parts. Since frictional damping is heavily influenced by the contact condition at the interface, the most direct and insightful approach is thereby to actively monitor the contact interface. Although several methods have already been proposed to monitor the contact interfaces quasi-statically or in pre-sliding, such as digital image correlation, X-Ray and ultrasound, only limited data is available of the frictional interface behaviour during high frequency vibration.To provide a better insight into the contact interface behaviour during high frequency cyclic motion, an optical method is here developed based on transparent friction specimens and total internal reflection, and applied to an existing friction test rig. The resulting measurements across the whole interface show a large variation in the real area of contact during each vibration cycle, which could be linked to the kinematics of the contact interface. This large variation is observed for the first time in high frequency oscillating contacts and is attributed to ageing effect and fracture of asperities. These two effects dominate the contact mechanism at different sliding velocities and induce variations in the real area of contact during each vibration cycle. These results suggest that the mechanisms behind high frequency contact behaviour are more complex than what commonly assumed in dynamics simulations.

  • Journal article
    Bikos D, Samaras G, Cann P, Masen M, Hardalupas I, Vieira J, Hartmann C, Huthwaite P, Lan B, Charalambides Met al., 2023,

    Destructive and non-destructive mechanical characterisation of chocolate with different levels of porosity under various modes of deformation

    , Journal of Materials Science, Vol: 58, Pages: 5104-5127, ISSN: 0022-2461

    Chocolate exhibits a complex material response under the varying mechanical loads present during oral processing. Mechanical properties such as Young’s modulus and fracture stress are linked to sensorial attributes such as hardness. Apart from this link with hardness perception, these mechanical properties are important input parameters towards developing a computational model to simulate the first bite. This study aims to determine the mechanical properties of chocolate with different levels of micro-aeration, 0–15%, under varying modes of deformation. Therefore, destructive mechanical experiments under tension, compression, and flexure loading are conducted to calculate the Young’s modulus, yield, and fracture stress of chocolate. The values of Young’s modulus are also confirmed by independent ultrasonic mechanical experiments. The results showed that differences up to 35% were observed amongst the Young’s modulus of chocolate for different mechanical experiments. This maximum difference was found to drop with increasing porosity and a negligible difference in the Young’s modulus measurements amongst the different mechanical experiments is observed for the 15% micro-aerated chocolate. This phenomenon is caused by micro-pores obstructing the microscopic inelastic movement occurring from the early stages of the material’s deformation. This work provides a deeper understanding of the mechanical behaviour of chocolate under different loading scenarios, which are relevant to the multiaxial loading during mastication, and the role of micro-aeration on the mechanical response of chocolate. This will further assist the food industry’s understanding of the design of chocolate products with controlled and/or improved sensory perception.

  • Journal article
    Zhang Y, Cegla F, 2023,

    Co-located dual-wave ultrasonics for component thickness and temperature distribution monitoring

    , Structural Health Monitoring, Vol: 22, Pages: 1090-1104, ISSN: 1475-9217

    Permanently installed ultrasonic sensors have found increasing applications in the field of structural health monitoring (SHM), in particular with respect to thickness measurement and corrosion monitoring. As ultrasonic velocity is temperature dependent, the state and temperature distribution of a component contribute to much of the measurement uncertainties of an ultrasonic SHM system. On the other hand, the temperature dependency of ultrasonic velocity has also led to various temperature sensing methods for measuring temperature distributions within solid materials. While conventional ultrasound-based techniques can measure either a component’s thickness at a given temperature, or the internal temperature distributions at a given component thickness, measurement fluctuations and drifts can occur if both variables are set to change simultaneously. In this study, we propose a dual-wave approach to overcome the limitations of the existing methods. ‘Co-located’ shear and longitudinal pulse-echo measurements are used to simultaneously track the thickness change and through-thickness temperature variation of a steel plate in complex environmental conditions. Results of the verification experiments showed that, in the given conditions, the proposed dual-wave correction method could reduce thickness measurement uncertainties by approximately a factor of 5 and eliminate 90% of the drift in temperature predictions.

  • Journal article
    Sarris G, Haslinger SG, Huthwaite P, Lowe MJSet al., 2023,

    Ultrasonic methods for the detection of near surface fatigue damage

    , Independent Nondestructive Testing and Evaluation (NDT and E) International, Vol: 135, Pages: 1-13, ISSN: 0963-8695

    Fatigue zones in a material can be identified using ultrasonic waves, as it has been shown that their propagation speed will reduce when travelling through such a zone. However, as fatigue damage is usually concentrated in a thin near-surface layer, through-thickness measurements result in very small changes of the average propagation speed across the full thickness, which are potentially difficult to reliably correlate to specific fatigue states. In this study, we have completed fatigue state assessments using Rayleigh waves, which travel on the surface of a material, to maximise those changes. We found that the use of Rayleigh waves amplifies the changes in speed, after propagation in the damaged region, by a factor of up to ten. The monotonic nature of the reduction in wave speed was verified against the theory using dislocation density measurements. Finally, a stiffness-reducing finite-element modelling technique, able to capture the effects of fatigue on the time of flight of longitudinal bulk and Rayleigh waves, was also derived and verified against the experimental measurements.

  • Journal article
    Sarris G, Haslinger SG, Huthwaite P, Lowe MJSet al., 2023,

    Fatigue state characterization of steel pipes using ultrasonic shear waves

    , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 70, Pages: 72-80, ISSN: 0885-3010

    The phenomenon of the reduction in the propagation speed of an ultrasonic wave when it travels through a fatigue zone has been well-studied in the literature. In addition, it has been established that shear waves are more severely affected by the presence of such a zone, compared with longitudinal waves. Our study uses these phenomena to develop a method able to characterize the fatigue state of steel pipes. Initially, the existing theory regarding the increased sensitivity of shear waves to the presence of fatigue is validated through measuring and comparing the change in propagation speed of both longitudinal and bulk shear waves on flat geometries, at different fatigue states. The comparison is achieved with the aid of ultrasonic speed C-scans of both longitudinal and shear waves, with the latter now being obtainable through our implementation of advances in electromagnetic acoustic transducers (EMATs) technology. EMATs have not been traditionally used for producing C-scans, and their ability do to so with adequate repeatability is demonstrated here; we show that shear wave scanning with EMATs now provides a possibility for inspection of fatigue damage on the inner surface of pressure-containing components in the nuclear power industry. We find that the change in ultrasonic wave speed is amplified when shear waves are used, with the magnitude of this amplification agreeing well with the theory. Following the verification of the theory, the use of EMATs allowed us to tailor the shear wave scanning method to pipe geometries, where C-scans with conventional piezoelectric transducers would not have been possible, with the results successfully revealing the presence of fatigue zones.

  • Journal article
    Georgiades E, Lowe MJS, Craster RV, 2022,

    Leaky wave characterisation using spectral methods

    , Journal of the Acoustical Society of America, Vol: 152, Pages: 1487-1497, ISSN: 0001-4966

    Leaky waves are an important class of waves, particularly for guiding waves along structures embedded within another medium; a mismatch in wavespeeds often leads to leakage of energy from the waveguide, or interface, into the medium, which consequently attenuates the guided wave. The accurate and efficient identification of theoretical solutions for leaky waves is a key requirement for the choices of modes and frequencies required for non-destructive evaluation inspection techniques. We choose a typical situation to study: an elastic waveguide with a fluid on either side. Historically, leaky waves are identified via root-finding methods that have issues with conditioning, or numerical methods that struggle with the exponential growth of solutions at infinity. By building upon a spectral collocation method, we show how it can be adjusted to find exponentially growing solutions, i.e., leaky waves, leading to an accurate, fast, and efficient identification of their dispersion properties. The key concept required is a mapping, in the fluid region, that allows for exponential growth of the physical solution at infinity, whilst the mapped numerical setting decays. We illustrate this by studying leaky Lamb waves in an elastic waveguide immersed between two different fluids and verify this using the commercially available software disperse.

  • Journal article
    Szlaszynski F, Lowe MJS, Huthwaite P, 2022,

    Short range pipe guided wave testing using SH0 plane wave imaging for improved quantification accuracy

    , Sensors, Vol: 22, Pages: 1-23, ISSN: 1424-8220

    Detection and criticality assessment of defects appearing in inaccessible locations in pipelines pose a great challenge for many industries. Inspection methods which allow for remote defect detection and accurate characterisation are needed. Guided wave testing (GWT) is capable of screening large lengths of pipes from a single device position, however it provides very limited individual feature characterisation. This paper adapts Plane Wave Imaging (PWI) to pipe GWT to improve defect characterization for inspection in nearby locations such as a few metres from the transducers. PWI performance is evaluated using finite element (FE) and experimental studies, and it is compared to other popular synthetic focusing imaging techniques. The study is concerned with part-circumferential part-depth planar cracks. It is shown that PWI achieves superior resolution compared to the common source method (CSM) and comparable resolution to the total focusing method (TFM). The techniques involving plane wave acquisition (PWI and CSM) are found to substantially outperform methods based on full matrix capture (FMC) in terms of signal-to-noise ratio (SNR). Therefore, it is concluded that PWI which achieves good resolution and high SNR is a more attractive choice for pipe GWT, compared to other considered techniques. Subsequently, a novel PWI transduction setup is proposed, and it is shown to suppresses the transmission of unwanted S0 mode, which further improves SNR of PWI.

  • Journal article
    Huang M, Huthwaite P, Rokhlin S, Lowe MJSet al., 2022,

    Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals

    , Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 478, Pages: 1-22, ISSN: 1364-5021

    This work studies scattering-induced elastic wave attenuation and phase velocity variation in three-dimensional untextured cubic polycrystals with statistically equiaxed grains using the theoretical second-order approximation (SOA) and Born approximation models and the grain-scale finite-element (FE) model, pushing the boundary towards strongly scattering materials. The results for materials with Zener anisotropy indices A > 1 show a good agreement between the theoretical and FE models in the transition and stochastic regions. In the Rayleigh regime, the agreement is reasonable for common structural materials with 1 < A <  3.2 but it deteriorates as A increases. The wavefields and signals from FE modelling show the emergence of very strong scattering at low frequencies for strongly scattering materials that cannot be fully accounted for by the theoretical models. To account for such strong scattering at A > 1, a semi-analytical model is proposed by iterating the far-field Born approximation and optimizing the iterative coefficient. The proposed model agrees remarkably well with the FE model across all studied materials with greatly differing microstructures; the model validity also extends to the quasi-static velocity limit. For polycrystals with A < 1, it is found that the agreement between the SOA and FE results is excellent for all studied materials and the correction of the model is not needed.

  • Journal article
    Zuo P, Huthwaite P, 2022,

    Quantitative mapping of thickness variations along a ray path using geometrical full waveform inversion and guided wave mode conversion

    , PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Vol: 478, ISSN: 1364-5021
  • Journal article
    Sarris G, Haslinger SG, Huthwaite P, Nagy PB, Lowe MJSet al., 2021,

    Attenuation of Rayleigh waves due to surface roughness

    , Journal of the Acoustical Society of America, Vol: 149, Pages: 4298-4308, ISSN: 0001-4966

    Rayleigh waves are well known to attenuate due to scattering when they propagate over a rough surface. Theoretical investigations have derived analytical expressions linking the attenuation coefficient to statistical surface roughness parameters, namely, the surface's root mean squared height and correlation length and the Rayleigh wave's wavenumber. In the literature, three scattering regimes have been identified—the geometric (short wavelength), stochastic (short to medium wavelength), and Rayleigh (long wavelength) regimes. This study uses a high-fidelity two-dimensional finite element (FE) modelling scheme to validate existing predictions and provide a unified approach to studying the problem of Rayleigh wave scattering from rough surfaces as the same model can be used to obtain attenuation values regardless of the scattering regime. In the Rayleigh and stochastic regimes, very good agreement is found between the theory and FE results both in terms of the absolute attenuation values and for asymptotic power relationships. In the geometric regime, power relationships are obtained through a combination of dimensional analysis and FE simulations. The results here also provide useful insight into verifying the three-dimensional theory because the method used for its derivation is analogous.

  • Journal article
    Abel R, Behforootan S, Boughton O, Hansen U, Cobb J, Huthwaite Pet al.,

    Ultrasound and Bone Disease: A Systematic Review

    , World Journal of Surgery and Surgical Research
  • Journal article
    Huang M, Sha G, Huthwaite P, Rokhlin S, Lowe MJSet al., 2021,

    Longitudinal wave attenuation in polycrystals with elongated grains: 3D numerical and analytical modeling

    , Journal of the Acoustical Society of America, Vol: 149, Pages: 2377-2394, ISSN: 0001-4966

    This work develops a second-order approximation (SOA) model and a three-dimensional (3D) finite element (FE) model to calculate scattering-induced attenuation for elastic wave propagation in polycrystals with elongated grains of arbitrary crystal symmetry. The SOA model accounts for some degree of multiple scattering, whereas the 3D FE model includes all scattering possibilities. The SOA model incorporates the accurate geometric two-point correlation function obtained from the FE material systems to enable comparative studies between the two models. Also, the analytical Rayleigh and stochastic asymptotes are presented to provide explicit insights into propagation behaviors. Quantitative agreement is found between the FE and analytical models for all evaluated cases. In particular, the FE simulations support the SOA model prediction that grain shape does not exert influence on attenuation in the Rayleigh regime and its effect emerges as frequency increases to the stochastic regime showing anisotropy in attenuation. This attenuation anisotropy intensifies with the increase in frequency, but it exhibits a complicated behavior as frequency transits into the geometric regime. Wavefield fluctuations captured from the FE simulations are provided to help observe these complex scattering behaviors. The proportionality of attenuation to elastic scattering factors is also quantitatively evaluated.

  • Journal article
    Shipway NJ, Huthwaite P, Lowe MJS, Barden TJet al., 2021,

    Using ResNets to perform automated defect detection for Fluorescent Penetrant Inspection

    , Independent Nondestructive Testing and Evaluation (NDT and E) International, Vol: 119, Pages: 102400-102400, ISSN: 0963-8695

    Fluorescent Penetrant Inspection (FPI) is a popular Non-Destructive Testing (NDT) method which is used extensively in the aerospace industry. However, the nature of FPI means results are susceptible to the effects of human factors and this can lead to variable results, making automation desirable. Previous work has investigated the use of established machine learning method Random Forest to perform automated defect detection for FPI. Whilst good results were obtained, there was still a significant number of false positives being identified as defective. This paper presents work done to investigate the potential of using deep learning methods to perform automated defect detection.A dataset was obtained from a set of 99 titanium alloy test pieces with cracks induced using thermal fatigue loading. These test pieces were repeatedly processed and using data augmentation a large dataset was obtained. This data was used to train a ResNet34 and ResNet50 architecture as well as a Random Forest. Two significant results were obtained. Firstly, the ResNet50 is able to create a network capable of detecting 95% of defects with a false call rate of 0.07. This result far exceeded that obtained using the Random Forest method despite both methods only having access to a small dataset. This demonstrated the strong capability of deep learning architectures. The second result was that increasing the amount of data obtained from non defective regions significantly increases performance. This result is encouraging as this data, obtained from non-cracked parts, can be quickly and cheaply obtained by reprocessing test pieces.

  • Journal article
    Zimmermann A, Huthwaite P, Pavlakovic B, 2021,

    High-resolution thickness maps of corrosion using SH1 guided wave tomography

    , Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 477, ISSN: 1364-5021

    Quantifying corrosion damage is vital for the petrochemical industry, and guided wave tomography can provide thickness maps of such regions by transmitting guided waves through these areas and capturing the scattering information using arrays. The dispersive nature of the guided waves enables a reconstruction of wave velocity to be converted into thickness. However, existing approaches have been shown to be limited in in-plane resolution, significantly short of that required to accurately image a defect target of three times the wall thickness (i.e. 3 T) in each in-plane direction. This is largely due to the long wavelengths in the fundamental modes commonly used, being around 4 T for both A0 and S0 at the typical operation points. In this work, the suitability of the first-order shear-horizontal guided wave mode, SH1, has been investigated to improve the resolution limit. The wavelength at the desired operating point is significantly shorter, enabling an improvement in resolution of around 2.4 times. This is first verified by realistic finite-element simulations and then validated by experimental results, confirming the improved resolution limit can now allow defects of maximum extent 3T-by-3T to be reliably detected and sized, i.e. a long-pursued goal of guided wave tomography has been achieved.

  • Journal article
    Haslinger SG, Lowe MJS, Craster R, Huthwaite P, Shi Fet al., 2021,

    Prediction of reflection amplitudes for ultrasonic inspection of rough planar defects

    , Insight, Vol: 63, Pages: 28-36, ISSN: 2156-485X

    The characteristics of planar defects (no loss of material volume) that arise during industrial plant operation are difficult to predict in detail, yet these can affect the performance of non-destructive testing (NDT) used to manage plant structural integrity. Inspection modelling is increasingly used to design and assess ultrasonic inspections of such plant items. While modelling of smooth planar defects is relatively mature and validated, issues have remained in the treatment of rough planar defect species. The qualification of ultrasonic inspections for such defects is presently very conservative, owing to the uncertainty of the amplitudes of rough surface reflections. Pragmatic solutions include the addition of large sensitivity thresholds and more frequent inspection intervals, which require more plant downtime. In this article, an alternative approach has been developed by the authors to predict the expected surface reflection from a rough defect using a theoretical statistical model. Given only the frequency, angle of incidence and two statistical parameter values used to characterise the defects, the expected reflection amplitude is obtained rapidly for any scattering angle and size of defect, for both compression and shear waves. The method is applicable for inspections of isotropic media that feature surface reflections such as pulse-echo or pitch-catch, rather than for tip signal-dependent techniques such as time-of-flight diffraction. The potential impact for inspection qualification is significant, with the new model predicting increases of up to 20 dB in signal amplitude in comparison with models presently used in industry. All mode conversions are included and rigorous validations using numerical and experimental methods have been performed. The model has been instrumental in obtaining new statistically significant results related to the effect of tilt; the expected pulse-echo backscattered amplitude for very rough planar defects is independent of til

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=388&limit=20&page=2&respub-action=search.html Current Millis: 1769073873752 Current Time: Thu Jan 22 09:24:33 GMT 2026