Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Chen L, Cai Z, Jiang Z, Luo J, Sun L, Childs P, Zuo Het al., 2024,

    AskNatureNet: A divergent thinking tool based on bio-inspired design knowledge

    , Advanced Engineering Informatics, Vol: 62, Pages: 102593-102593, ISSN: 1474-0346
  • Journal article
    Ballou N, Denisova A, Ryan R, Rigby CS, Deterding Set al., 2024,

    The Basic Needs in Games Scale (BANGS): A new tool for investigating positive and negative video game experiences

    , International Journal of Human Computer Studies, Vol: 188, ISSN: 1071-5819

    Players’ basic psychological needs for autonomy, competence, and relatedness are among the most commonly used constructs used in research on what makes video games so engaging, and how they might support or undermine user wellbeing. However, existing measures of basic psychological needs in games have important limitations—they either do not measure need frustration, or measure it in a way that may not be appropriate for the video games domain, they struggle to capture feelings of relatedness in both single- and multiplayer contexts, and they often lack validity evidence for certain contexts (e.g., playtesting vs experience with games as a whole). In this paper, we report on the design and validation of a new measure, the Basic Needs in Games Scale (BANGS), whose 6 subscales cover satisfaction and frustration of each basic psychological need in gaming contexts. The scale was validated and evaluated over five studies with a total of 1246 unique participants. Results supported the theorized structure of the scale and provided evidence for discriminant, convergent and criterion validity. Results also show that the scale performs well over different contexts (including evaluating experiences in a single game session or across various sessions) and over time, supporting measurement invariance. Further improvements to the scale are warranted, as results indicated lower reliability in the autonomy frustration subscale, and a surprising non-significant correlation between relatedness satisfaction and frustration. Despite these minor limitations, BANGS is a reliable and theoretically sound tool for researchers to measure basic needs satisfaction and frustration with a degree of domain validity not previously available.

  • Journal article
    Bonkile M, Jiang Y, Kirkaldy N, Sulzer V, Timms R, Wang H, Offer G, Wu Bet al., 2024,

    Is silicon worth it? Modelling degradation in composite silicon–graphite lithium-ion battery electrodes

    , Journal of Power Sources, Vol: 606, ISSN: 0378-7753

    The addition of silicon into graphite lithium-ion battery anodes has the potential to increase cell energy density. However, understanding the complex degradation behaviour in these composite systems remains a research challenge. Here, we developed a coupled electrochemical–mechanical model of a composite silicon/graphite electrode, including stress-driven crack formation and solid electrolyte interphase layer growth for each material, validated with experimental degradation data from an LG M50T cell. The model reveals self-limiting loss of silicon due to decreasing stress in the silicon as the silicon activity shifts to a lower state-of-charge. Higher C-rates can lead to lower degradation due to lower phase utilisation as voltage cut-offs are reached earlier. Increasing silicon content can reduce the stress in the silicon by distributing reaction current density over more material. Using this model, we explored whether the extra capacity from silicon is generally ‘worth’ the faster degradation compared to graphite-only electrodes. The model shows if you use the silicon, you lose it, as the higher initial capacity is rapidly lost with regular high depth-of-discharge events. However, silicon does have value if it enables full graphite utilisation without range anxiety; if high depth-of-discharge events are minimised then graphite’s superior longevity can be utilised while exploiting silicon’s high specific capacity. The model is integrated into PyBaMM (an open-source physics-based modelling platform); providing the research community and industry with the capability to reproduce our results and further explore the dynamic lifetime behaviour of composite electrodes.

  • Conference paper
    Smith F, Sadek M, Mougenot C, 2024,

    Empowering end-users in co-designing AI: an AI literacy card-based toolkit for non-technical audiences

    , 36th International BCS Human-Computer Interaction Conference
  • Journal article
    Zhou Y, Sun Y, Li Y, Shen C, Lou Z, Min X, Stewart Ret al., 2024,

    A Highly Durable and UV‐Resistant Graphene‐Based Knitted Textile Sensing Sleeve for Human Joint Angle Monitoring and Gesture Differentiation

    , Advanced Intelligent Systems, ISSN: 2640-4567

    <jats:p>Flexible strain sensors based on textiles have attracted extensive attention owing to their light weight, flexibility, and comfort when wearing. However, challenges in integrating textile strain sensors into wearable sensing devices include the need for outstanding sensing performance, long‐term monitoring stability, and fast, convenient integration processes to achieve comprehensive monitoring. The scalable fabrication technique presented here addresses these challenges by incorporating customizable graphene‐based sensing networks into knitted structures, thus creating sensing sleeves for precise motion detection and differentiation. The performance and real‐world application potential of the sensing sleeve are evaluated by its precision in angle estimation and complex joint motion recognition during intra‐ and intersubject studies. For intra‐subject analysis, the sensing sleeve only exhibits a 2.34° angle error in five different knee activities among 20 participants, and the sensing sleeves show up to 94.1% and 96.1% accuracy in the gesture classification of knee and elbow, respectively. For inter‐subject analysis, the sensing sleeve demonstrates a 4.21° angle error, and it shows up to 79.9% and 85.5% accuracy in the gesture classification of knee and elbow, respectively. An activity‐guided user interface compatible with the sensing sleeves for human motion monitoring in home healthcare applications is presented to illustrate the potential applications.</jats:p>

  • Journal article
    Godden T, Mulvey B, Redgrave E, Nanayakkara Tet al., 2024,

    PaTS-wheel: a passively-transformable single-part wheel for mobile robot navigation on unstructured terrain

    , IEEE Robotics and Automation Letters, Vol: 9, Pages: 5512-5519, ISSN: 2377-3766

    Most mobile robots use wheels that perform well on even and structured ground, like in factories and warehouses. However, they face challenges traversing unstructured terrain such as stepped obstacles. This letter presents the design and testing of the PaTS-Wheel: a Passively-Transformable Single-part Wheel that can transform to render hooks when presented with obstacles. The passive rendering of this useful morphological feature is guided purely by the geometry of the obstacle. The energy consumption and vibrational profile of the PaTS-Wheel on flat ground is comparable to a standard wheel of the same size. In addition, our novel wheel design was tested traversing different terrains with stepped obstacles of incremental heights. The PaTS-Wheel achieved 100% success rate at traversing stepped obstacles with heights ≈70% its diameter, higher than the results obtained for an equivalent wheel ( ≈25% its diameter) and an equivalent wheg ( ≈61% its diameter). This achieves the design objectives of combining the energy efficiency and ride smoothness of wheels with the obstacle traversal capabilities of legged robots, all without requiring any sensors, actuators, or controllers.

  • Journal article
    Dudkina E, Bin M, Breen J, Crisostomi E, Ferraro P, Kirkland S, Marecek J, Murray-Smith R, Parisini T, Stone L, Yilmaz S, Shorten Ret al., 2024,

    A comparison of centrality measures and their role in controlling the spread in epidemic networks

    , International Journal of Control, Vol: 97, Pages: 1325-1340, ISSN: 0020-7179

    The ranking of nodes in a network according to their centrality or ``importance'' is a classic problem that has attracted the interest of different scientific communities in the last decades. The COVID-19 pandemic has recently rejuvenated the interest in this problem, as the ranking may be used to decide who should be tested, or vaccinated, first, in a population of asymptomatic individuals. In this paper, we review classic methods for node ranking and compare their performance in a benchmark network that considers the community-based structure of society. The outcome of the ranking procedure is then used to decide which individuals should be tested, and possibly quarantined, first. Finally, we also review the extension of these ranking methods to weighted graphs and explore the importance of weights in a contact network by providing a toy model and comparing node rankings for this case in the context of disease spread.

  • Journal article
    Jagannath S, Gatersleben B, Ratcliffe E, 2024,

    Flexibility of the home and residents’ psychological wellbeing

    , Journal of Environmental Psychology, Vol: 96, Pages: 102333-102333, ISSN: 0272-4944
  • Journal article
    Tu Y, Wu B, Ai W, Martínez-Pañeda Eet al., 2024,

    Influence of concentration-dependent material properties on the fracture and debonding of electrode particles with core–shell structure

    , Journal of Power Sources, Vol: 603, ISSN: 0378-7753

    Core–shell electrode particle designs offer a route to improved lithium-ion battery performance. However, they are susceptible to mechanical damage such as fracture and debonding, which can significantly reduce their lifetime. Using a coupled finite element model, we explore the impacts of diffusion-induced stresses on the failure mechanisms of an exemplar system with an NMC811 core and an NMC111 shell. In particular, we systematically compare the implications of assuming constant material properties against using Li concentration-dependent diffusion coefficient and partial molar volume. With constant material properties, our results show that smaller cores with thinner shells avoid debonding and fracture regimes. When factoring in a concentration-dependent partial molar volume, the maximum values of tensile hoop stress in the shell are found to be significantly lower than those predicted with constant properties, reducing the likelihood of fracture. Furthermore, with a concentration-dependent diffusion coefficient, significant barriers to full electrode utilisation are observed due to reduced lithium mobility at high states of lithiation. This provides a possible explanation for the reduced accessible capacity observed in experiments. Shell thickness is found to be the dominant factor in precluding structural integrity once the concentration dependency is accounted for. These findings shed new light on the performance and effective design of core–shell electrode particles.

  • Conference paper
    Ito A, Taoka Y, Wan E, Sadek M, Mougenot C, Saito Set al., 2024,

    Gaps between reflection frameworks and students’ practice: Implications for design education

    , DESIGN 2024, Publisher: Cambridge University Press, Pages: 2865-2874, ISSN: 2732-527X

    This paper aims to identify gaps between the reflection frameworks and students’ practice. Through a systematic literature review (PRISMA) and a qualitative survey of students, 12 reflection frameworks were reviewed, and the 13 challenges students faced at design projects in two design schools were identified. The results indicate three gaps between theory and students’ practice: skills of designers, granularities of reflection items, and supports of bridging reflection to next actions. This study provides insights for future development of support tools to bridge the gaps in design education.

  • Journal article
    Cook D, Peters D, Moradbakhti L, Su T, Da Re M, Schuller B, Quint J, Wong E, Calvo RAet al., 2024,

    A text-based conversational agent for asthma support: mixed-methods feasibility study

    , Digital Health, ISSN: 2055-2076
  • Conference paper
    Robson N, McPherson A, Bryan-Kinns N, 2024,

    Thinking with sound: exploring the experience of listening to an ultrasonic art installation

    , CHI Conference on Human Factors in Computing Systems, Publisher: ACM

    Entanglement theories are well established in HCI discourse. These involve a commitment to view human experience in encounters with technology as relational and contingent, and research apparatuses as co-producers rather than passive observers of phenomena. In this paper, we argue that sound is the sensory modality best suited to the investigation of entanglements. Materialist theoriesof sound and listening guide both the design of a novel interactive sound installation and the methodological approach of a participant study exploring the experience of listening. We present a diffractive analysis whereby micro-phenomenological interview data is read with sonic theories, generating accounts that might otherwise remain mute: the temporal fluctuation and physical feeling ofproximity in listener entanglements with sound, somatic intention setting, and plural interpretations of interactivity. Finally, we offer a series of provocations for HCI to embrace qualities of the sonic and consider epistemological positions grounded in other sense modalities.

  • Conference paper
    Morrison L, McPherson A, 2024,

    Entangling entanglement: a diffractive dialogue on HCI and musical interactions

    , CHI Conference on Human Factors in Computing Systems, Publisher: ACM

    If, as several recent papers claim, we have entered a new wave of “Entanglement HCI,” then we are still at a liminal stage prior to consensus around which sources underpin this paradigm shift or how they might inform actionable approaches to design practice. Now is the time to interpret technosocial mediation from a range of disciplinary perspectives, rather than settling on a narrow canon of literature. To this end, our paper enacts a diffractive dialogue between researchers from different disciplines, focusing on digital musical instruments to examine how technical knowledge from design and engineering can be read against the grain of critical theories from music, media, and cultural studies. Drawing on two object lessons—keyboards and step sequencers, plus their remediations inrecent musical interaction research—we highlight interdependencies of theory, design, and practice, and we show how the idea of entanglement is itself entangled in a cross-disciplinary web.

  • Conference paper
    Sadek M, Constantinides M, Quercia D, Mougenot Cet al., 2024,

    Guidelines for integrating value sensitive design in responsible AI toolkits

    , CHI 2024, Publisher: ACM

    Value Sensitive Design (VSD) is a framework for integrating human values throughout the technology design process. In parallel, Responsible AI (RAI) advocates for the development of systems aligning with ethical values, such as fairness and transparency. In this study, we posit that a VSD approach is not only compatible, but also advantageous to the development of RAI toolkits. To empirically assess this hypothesis, we conducted four workshops involving 17 early-career AI researchers. Our aim was to establish links between VSD and RAI values while examining how existingtoolkits incorporate VSD principles in their design. Our findings show that collaborative and educational design features within these toolkits, including illustrative examples and open-ended cues, facilitate an understanding of human and ethical values, and empower researchers to incorporate values into AI systems. Drawing on these insights, we formulated six design guidelines for integrating VSD values into the development of RAI toolkits.

  • Conference paper
    Kao D, Ballou N, Gerling K, Breitsohl H, Deterding Set al., 2024,

    How does juicy game feedback motivate? Testing curiosity, competence, and effectance

    , New York, CHI 2024, Publisher: ACM

    ‘Juicy’ or immediate abundant action feedback is widely held to make video games enjoyable and intrinsically motivating. Yet we do not know why it works: Which motives are mediating it? Which features afford it? In a pre-registered (n=1,699) online experiment, we tested three motives mapping prior practitioner discourse— effectance, competence, and curiosity—and connected design fea- tures. Using a dedicated action RPG and a 2x2+control design, we varied feedback amplification, success-dependence, and variabil- ity and recorded self-reported effectance, competence, curiosity, and enjoyment as well as free-choice playtime. Structural equa- tion models show curiosity as the strongest enjoyment and only playtime predictor and support theorised competence pathways. Success dependence enhanced all motives, while amplification un- expectedly reduced them, possibly because the tested condition unintentionally impeded players’ sense of agency. Our study ev- idences uncertain success affording curiosity as an underappre- ciated moment-to-moment engagement driver, directly supports competence-related theory, and suggests that prior juicy game feel guidance ties to legible action-outcome bindings and graded success as preconditions of positive ‘low-level’ user experience.

  • Conference paper
    Hu X, Li J, Picinali L, Hogg Aet al., 2024,

    HRTF SPATIAL UPSAMPLING IN THE SPHERICAL HARMONICS DOMAIN EMPLOYING A GENERATIVE ADVERSARIAL NETWORK

    , International Conference on Digital Audio Effects (DAFx)
  • Journal article
    Chakrabarti BK, Bree G, Dao A, Remy G, Ouyang M, Dönmez KB, Wu B, Williams M, Brandon NP, George C, Low CTJet al., 2024,

    Lightweight Carbon-Metal-Based Fabric Anode for Lithium-Ion Batteries.

    , ACS Appl Mater Interfaces, Vol: 16, Pages: 21885-21894

    Lithium-ion battery electrodes are typically manufactured via slurry casting, which involves mixing active material particles, conductive carbon, and a polymeric binder in a solvent, followed by casting and drying the coating on current collectors (Al or Cu). These electrodes are functional but still limited in terms of pore network percolation, electronic connectivity, and mechanical stability, leading to poor electron/ion conductivities and mechanical integrity upon cycling, which result in battery degradation. To address this, we fabricate trichome-like carbon-iron fabrics via a combination of electrospinning and pyrolysis. Compared with slurry cast Fe2O3 and graphite-based electrodes, the carbon-iron fabric (CMF) electrode provides enhanced high-rate capacity (10C and above) and stability, for both half cell and full cell testing (the latter with a standard lithium nickel manganese oxide (LNMO) cathode). Further, the CMFs are free-standing and lightweight; therefore, future investigation may include scaling this as an anode material for pouch cells and 18,650 cylindrical batteries.

  • Journal article
    Puglia M, Parker L, Clube RKM, Demirel P, Aurisicchio Met al., 2024,

    The circular policy canvas: Mapping the European Union's policies for a sustainable fashion textiles industry

    , Resources, Conservation and Recycling, Vol: 204, ISSN: 0921-3449

    Policy plays a major role in enabling and accelerating the shift to a Circular Economy (CE). Transitioning to a CE in the Fashion Textiles Industry (FTI) requires a holistic policy approach through comprehensive and coherent policy interventions across the resource life cycle. This paper introduces the novel Circular Policy Canvas tool to systematically and visually map CE policies across six dimensions (policy environment, resource life cycle, CE loop, CE strategy, system element and circular business model). This is applied to thirty FTI policies in the EU policy landscape. The canvas enables policymakers and researchers to assess policies to identify gaps and priorities for CE policy development. The findings determine the recency of the EU policy agenda for a circular FTI meaning that there are gaps in terms of coverage and coherence. In particular, the study identifies a lack of attention to displacing the linear economy, a concentration of policies in the head and tail of the resource life cycle with gaps in the core, a dominance of policies in the outer over the inner loop and inadequate coverage of policies focused on actors, infrastructure and resources.

  • Journal article
    Squires I, Foster JM, Galvis A, Cooper SJet al., 2024,

    Investigating the Effect of the Separation of Scales in Reduced Order Battery Modelling: Implications on the Validity of the Newman Model

    , Journal of the Electrochemical Society, Vol: 171, ISSN: 0013-4651

    Modelling lithium-ion battery behavior is essential for performance prediction and design improvement. However, this task is challenging due to processes spanning many length scales, leading to computationally expensive models. Reduced order models have been developed to address this, assuming a “separation of scales” between micro- and macroscales. This study compares two approaches: direct microstructure-resolved 3D domain electrochemical modelling and a simplified 1D homogenized model, similar to the Doyle-Fuller-Newman model. The research investigates the validity of the scale separation assumption in continuum electrode-level models by varying scale separation factors, boundary conditions, and geometries. The findings reveal increases in deviation between the 3D models and 1D models for more tortuous, less porous microstructures, especially under higher discharge rates. However, under realistic conditions, with an electrode featuring eight particles across its thickness and typical transport properties, the 3D model predicts only a slight (2%) increase in current compared to the 1D model at a high rate of 7C (approximately j ≈ 350 Am−2). These results suggest that the separation of scales assumption in the DFN model is generally suitable for a wide range of operating conditions. However, 1D models may overlook local variations in electrolyte concentration and potential, crucial for understanding degradation mechanisms.

  • Journal article
    Tillfors M, Van Zalk N, Boersma K, Anniko Met al., 2024,

    Longitudinal links between adolescent social anxiety and depressive symptoms: stressful experiences at home, in school and with peers

    , Nordic Psychology, Vol: 76, Pages: 230-249, ISSN: 0029-1463

    Social anxiety and depressive symptoms often co-occur during early adolescence but contributing factors to this development are still a matter of debate. This study examined the role of daily stressors (peers, school and homelife) in the links between adolescent social anxiety and depressive symptoms. 7-8th graders at Time 1 (N = 2,752, Mage = 13.65; 47.5% girls) were followed across three time-points. Cross-lagged path models showed that depressive symptoms predicted later social anxiety, but not vice versa. Bidirectional links were identified between peer stress and social anxiety, and between school/homelife stress and depressive symptoms, respectively. Indirect effects of social anxiety, depressive symptoms, and daily stressors were found, though stressors did not mediate the links between social anxiety and depressive symptoms (or vice versa). Our findings indicate an intricate role of daily stressors in different domains on the links between social anxiety and depressive symptoms.

  • Journal article
    Ruan H, Kirkaldy N, Offer G, Wu Bet al., 2024,

    Diagnosing health in composite battery electrodes with explainable deep learning and partial charging data

    , Energy and AI, Vol: 16, ISSN: 2666-5468

    Lithium-ion batteries with composite anodes of graphite and silicon are increasingly being used. However, their degradation pathways are complicated due to the blended nature of the electrodes, with graphite and silicon degrading at different rates. Here, we develop a deep learning health diagnostic framework to rapidly quantify and separate the different degradation rates of graphite and silicon in composite anodes using partial charging data. The convolutional neural network (CNN), trained with synthetic data, uses experimental partial charging data to diagnose electrode-level health of tested batteries, with errors of less than 3.1% (corresponding to the loss of active material reaching ∼75%). Sensitivity analysis of the capacity-voltage curve under different degradation modes is performed to provide a physically informed voltage window for diagnostics with partial charging data. By using the gradient-weighted class activation mapping approach, we provide explainable insights into how these CNNs work; highlighting regions of the voltage-curve to which they are most sensitive. Robustness is validated by introducing noise to the data, with no significant negative impact on the diagnostic accuracy for noise levels below 10 mV, thus highlighting the potential for deep learning approaches in the diagnostics of lithium-ion battery performance under real-world conditions. The framework presented here can be generalised to other cell formats and chemistries, providing robust and explainable battery diagnostics for both conventional single material electrodes, but also the more challenging composite electrodes.

  • Conference paper
    Liuqing C, Zhaojun J, Duowei X, Zebin C, Lingyun S, Childs P, Zuo Het al., 2024,

    BIDTrainer: an LLMs-driven education tool for enhancing the understanding and reasoning in bio-inspired design

    , CHI Conference on Human Factors in Computing Systems (CHI ’24), Publisher: ACM, Pages: 1-20

    Bio-inspired design (BID) fosters innovations in engineering. Learning BID is crucial for developing multidisciplinary innovation skillsof designers and engineers. Current BID education aims to enhancelearners’ understanding and analogical reasoning skills. However,it often heavily relies on the teachers’ expertise. When learnerspursue independent learning using some educational tools, theyface challenges in understanding and reasoning practice withinthis multidisciplinary field. Additionally, evaluating their learningoutcomes comprehensively becomes problematic. Addressing thesechallenges, we introduce a LLMs-driven BID education methodbased on a structured ontology and three strategies: enhancingunderstanding through LLMs-enpowered "learning by asking", assisting reasoning by providing hints and feedback, and assessinglearning outcomes through benchmarking against existing BIDcases. Implementing the method, we developed BIDTrainer, a BID education tool. User studies indicate that learners using BIDTrainerunderstood BID knowledge better, reason faster with higher interactivity than the baseline, and BIDTrainer assessed the learningoutcomes consistent with experts.

  • Journal article
    Ding Z, Attar HR, Wang H, Liu H, Li Net al., 2024,

    Integrating convolutional neural network and constitutive model for rapid prediction of stress-strain curves in fibre reinforced polymers: a generalisable approach

    , Materials and Design, Vol: 241, ISSN: 0264-1275

    Despite recent advancements in using machine learning (ML) techniques to establish the microstructure-property linkage for composites’ representative volume elements (RVEs), challenges persist in effectively characterising the effect of microstructural randomness on material properties. This complexity arises from the difficulty of expressing randomness as definitive variables and its intertwined relations with other factors, such as material constituents. Such complexities result in limitations in generalising ML models across different material constituents. Conventional solutions to these challenges usually necessitate large datasets, which require considerable computational resources, for an accurate and generalisable ML models to be trained. This paper presents an innovative approach to tackling these challenges by integrating a high-accuracy convolutional neural network (CNN) with a novel microstructure-factored constitutive model (MCM). The MCM, rooted from classic empirical constitutive modelling, effectively segregates the microstructural and constituting material effects, extending the generalisability and thus significantly enhancing the efficacy of the CNN. This new approach enabled a CNN trained on the transverse stress-strain curves of one set of material constituents (CF/PEEK at 270 °C) to be generalised for the rapid prediction of various sets of material constituents at different temperatures, unseen by the CNN during training, with an average mean absolute percentage error around 3 %.

  • Journal article
    Willis S, Waheed U, Coward T, Myant Cet al., 2024,

    An automated design pipeline for transparent facial orthoses: A clinical study.

    , J Prosthet Dent, Vol: 131, Pages: 970-979

    STATEMENT OF PROBLEM: Transparent facial orthoses (TFOs) are commonly used for the treatment of craniomaxillofacial trauma and burns to prevent hypertrophic and keloid scarring. A TFO is typically customized to the patient's facial contours and relies on a precise fit to ensure good rehabilitative performance. A smart method of TFO design and manufacture is needed which does not require an experienced prosthetist, allowing for rapidly produced, well-fitting TFOs. Whether the rapid application reduces the final level of patient scarring is unclear. PURPOSE: The purpose of this clinical study was to determine whether a scalable, automated design-through-manufacture pipeline for patient specific TFO fabrication would be successful. MATERIAL AND METHODS: The automated pipeline received a 3-dimensional (3D) facial scan captured from a depth sensitive mobile phone camera. The scan was cleaned, aligned, and fit to a template mesh, with a known connectivity. The resultant fitted scan was passed into an automated design pipeline, outputting a 3D printable model of a custom TFO. The TFOs were fabricated with 3D printing and were both physically and digitally evaluated to test the fidelity of a digital fit testing system. RESULTS: A total of 10 individuals were scanned with 5 different scanning technologies (STs). All scans were passed through an automated fitting pipeline and categorized into 2 groups. Each ST was digitally fitted to a ground truth scan. In this manner, a Euclidean distance map was built to the actual facial geometry for each scan. Heatmaps of 3D Euclidean distances were made for all participant faces. CONCLUSIONS: The ability to automatically design and manufacture a custom fitted TFO using commercially available 3D scanning and 3D printing technology was successfully demonstrated. After considering equipment size and operational personnel requirements, vat polymerization (VP) technology was found to be the most promising route to TFO manufacture.

  • Journal article
    Weber C, Gatersleben B, Jagannath S, Füchslin B, Costa Delabrida ZNet al., 2024,

    Crowding and aggression during the COVID-19 lockdown in the United Kingdom: The relationship between residential density, subjective crowding, privacy, and aggression

    , Journal of Environmental Psychology, Pages: 102335-102335, ISSN: 0272-4944
  • Journal article
    Sadan MK, Kim T, Haridas AK, Yu H, Cumming D, Ahn J-H, Ahn H-Jet al., 2024,

    Overcoming copper-induced conversion reactions in nickel disulphide anodes for sodium-ion batteries.

    , Nanoscale Adv, Vol: 6, Pages: 2508-2515

    Employing copper (Cu) as an anode current collector for metal sulphides is perceived as a general strategy to achieve stable cycle performance in sodium-ion batteries, despite the compatibility of the aluminium current collector with sodium at low voltages. The capacity retention is attributed to the formation of copper sulphide with the slow corrosion of the current collector during cycling which is not ideal. Conventional reports on metal sulphides demonstrate excellent electrochemical performances using excessive carbon coatings/additives, reducing the overall energy density of the cells and making it difficult to understand the underlying side reaction with Cu. In this report, the negative influence of the Cu current collector is demonstrated with in-house synthesised, scalable NiS2 nanoparticles without any carbon coating as opposed to previous works on NiS2 anodes. Ex situ TEM and XPS experiments revealed the formation of Cu2S, further to which various current collectors were employed for NiS2 anode to rule out the parasitic reaction and to understand the true performance of the material. Overall, this study proposes the utilisation of carbon-coated aluminium foil (C/Al) as a suitable current collector for high active material content NiS2 anodes and metal sulphides in general with minimal carbon contents as it remains completely inert during the cycling process. Using a C/Al current collector, the NiS2 anode exhibits stable cycling performance for 5000 cycles at 50 A g-1, maintaining a capacity of 238 mA h g-1 with a capacity decay rate of 8.47 × 10-3% per cycle.

  • Book chapter
    Williams JP, Kirschner D, Deterding S, 2024,

    Sociology and Role-Playing Games

    , The Routledge Handbook of Role-Playing Game Studies, Publisher: Routledge, Pages: 243-260
  • Book chapter
    Hoover S, Simkins DW, Deterding S, Meldman DF, Brown Aet al., 2024,

    Theater and Performance Studies and Role-Playing Games

    , The Routledge Handbook of Role-Playing Game Studies, Publisher: Routledge, Pages: 227-242
  • Book
    Zagal JP, Deterding S, 2024,

    The Routledge Handbook of Role-Playing Game Studies

    , Publisher: Routledge
  • Book chapter
    Zagal JP, Deterding S, 2024,

    Definitions of “Role-Playing Games”

    , The Routledge Handbook of Role-Playing Game Studies, Publisher: Routledge, Pages: 21-55

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1221&limit=30&resgrpMemberPubs=true&page=1&resgrpMemberPubs=true&respub-action=search.html Current Millis: 1718505996667 Current Time: Sun Jun 16 03:46:36 BST 2024