BibTex format
@article{Cheng:2025:10.1016/j.inffus.2025.103255,
author = {Cheng, S and Bocquet, M and Ding, W and Finn, TS and Fu, R and Fu, J and Guo, Y and Johnson, E and Li, S and Liu, C and Moroi, EN and Panj, J and Piggott, M and Quilodran, C and Sharma, P and Wang, K and Xiao, D and Xue, X and Zeng, Y and Zhang, M and Zhou, H and Zhu, K and Arcucci, R},
doi = {10.1016/j.inffus.2025.103255},
journal = {INFORMATION FUSION},
title = {Machine learning for modelling unstructured grid data in computational physics: A review},
url = {http://dx.doi.org/10.1016/j.inffus.2025.103255},
volume = {123},
year = {2025}
}
RIS format (EndNote, RefMan)
TY - JOUR
AU - Cheng,S
AU - Bocquet,M
AU - Ding,W
AU - Finn,TS
AU - Fu,R
AU - Fu,J
AU - Guo,Y
AU - Johnson,E
AU - Li,S
AU - Liu,C
AU - Moroi,EN
AU - Panj,J
AU - Piggott,M
AU - Quilodran,C
AU - Sharma,P
AU - Wang,K
AU - Xiao,D
AU - Xue,X
AU - Zeng,Y
AU - Zhang,M
AU - Zhou,H
AU - Zhu,K
AU - Arcucci,R
DO - 10.1016/j.inffus.2025.103255
PY - 2025///
SN - 1566-2535
TI - Machine learning for modelling unstructured grid data in computational physics: A review
T2 - INFORMATION FUSION
UR - http://dx.doi.org/10.1016/j.inffus.2025.103255
VL - 123
ER -