Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Shi F, Huthwaite P, 2018,

    Ultrasonic wave-speed diffraction tomography with undersampled data using virtual transducers

    , IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol: 65, Pages: 1226-1238, ISSN: 0885-3010

    Ultrasonic diffraction tomography (DT) offers a way to achieve high-resolution imaging of the wavespeed map, and hence has strong potential applications in medical diagnosis and Nondestructive evaluation (NDE). Ideal images can be obtained with a complete array of sensors surrounding the scatterer, provided that the measurement data are fully sampled in space, obeying the Nyquist criterion. Spatial undersampling causes the image to be distorted and introduce unwanted circular artefacts. In this paper we propose an iteration approach using virtual transducers to achieve high-resolution tomographic imaging with undersampled measurements. At each iteration stage, the extent constraint estimated from the shape of the object of interest is applied on the image space to obtain a regularized image, based on which the ultrasonic measurement data at virtual transducers are calculated using a forward model. The full dataset composed of original and virtual measurements is then used for tomography in the next stage. A final image with sufficiently high resolution is obtained after only a few iterations. The new imaging method yields improvements in the robustness and accuracy of ultrasonic tomography with undersampled data.We present numerical results using complicated wavespeed maps from realistic corrosion profiles. In addition, an experiment using guided ultrasonic waves is performed to further evaluate the imaging method.

  • Journal article
    Cawley P, Khalili P, 2018,

    Relative ability of wedge coupled piezoelectric and meander coil EMAT probes to generate single mode Lamb waves

    , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 65, Pages: 648-656, ISSN: 0885-3010

    Ultrasonic guided waves are used extensively when checking for defects in petrochemical and other industries and are mostly generated using piezoelectric transducers on an angled wedge or EMATs in different configurations. Low frequency inspection allows for long distance propagation but it is best suited for detecting relatively large defects, while at higher frequencies, the presence of multiple wave modes limit defect detectability, so achieving practical single Lamb mode excitation via careful transduction is very beneficial. This paper investigates the relative ability of angled piezoelectric and meander coil EMAT probes to produce single mode transduction in the medium (~1 to 5 MHz-mm) and high (> 5 MHz-mm) frequency-thickness regions of the dispersion curves. The nature of each transducer is studied analytically by simulating the corresponding surface forces, followed by the use of a Fourier transform in time and space (2-D FFT) to highlight the excitation region in wavenumber-frequency space. With angled wedge excitation there is a linear relationship between the excitation frequency and the wavenumber which means the excitation tends to track typical dispersion curves, allowing for easier pure mode generation. In contrast, the EMAT controls frequency and wavenumber separately which makes it more difficult to generate a pure mode when dispersion curves are close together; however, by narrowing the frequency bandwidth via a large number of cycles in the excitation signal, pure mode generation via an EMAT was shown to be possible even in areas of closely spaced modes. As example cases, analytical results, backed up by experiments, showed that signals dominated by the A0 mode at 1.5 MHz-mm and also the A1 mode at 18 MHz-mm can be generated with both angled piezoelectric and EMAT probes.

  • Journal article
    Shi F, Lowe M, Skelton EA, Craster RVet al., 2018,

    A time-domain finite element boundary integral approach for elastic wave scattering

    , Computational Mechanics, Vol: 61, Pages: 471-483, ISSN: 0178-7675

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  • Journal article
    Jarvis R, Cawley P, Nagy PB, 2018,

    Permanently installed corrosion monitoring using magnetic measurement of current deflection

    , STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, Vol: 17, Pages: 227-239, ISSN: 1475-9217
  • Journal article
    Zhang C, Huthwaite P, Lowe M, 2018,

    The application of the Factorization Method to the subsurface imaging of surfacebreaking cracks

    , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 65, Pages: 497-512, ISSN: 0885-3010

    A common location for cracks to appear is at the surface of a component; at the near surface, many nondestructive evaluation techniques are available to inspect for these, but at the far surface this is much more challenging. Ultrasonic imaging is proposed to enable far surface defect detection, location, and characterization. One specific challenge here is the presence of a strong reflection from the backwall, which can often mask the relatively small response from a defect. In this paper, the factorization method (FM) is explored for the application of subsurface imaging of the surface-breaking cracks. In this application, the component has two parallel surfaces, the crack is initiated from the far side and the phased array is attached on the near side. Ideally, the pure scattered field from a defect is needed for the correct estimation of the scatterer through the FM algorithm. However, the presence of the backwall will introduce a strong specular reflection into the measured data which should be removed before applying the FM algorithm. A novel subtraction method was developed to remove the backwall reflection. The performance of the FM algorithm and this subtraction method were tested with the simulated and experimental data. The experimental results showed a good consistency with the simulated results. It is shown that the FM algorithm can generate high-quality images to provide a good detection of the crack and an accurate sizing of the crack length. The subtraction method was able to provide a good backwall reflection removal in the case of small cracks (1-3 wavelengths).

  • Journal article
    Zou F, Cegla F, 2018,

    On quantitative corrosion rate monitoring with ultrasound

    , Journal of Electroanalytical Chemistry, Vol: 812, Pages: 115-121, ISSN: 1572-6657

    Wall-thickness loss rate (WTLR) is an important parameter that defines a corrosion process. The speed at which a WTLR can be determined is directly related to how quickly one can intervene in a process that is heading in the wrong direction. Ultrasonic testing has been widely used as a convenient and efficient technique for online corrosion monitoring. One of the key performance parameters of ultrasonic corrosion monitoring is detection speed. While WTLRs can be determined by fitting linear lines to wall-thickness loss (WTL) measurements, the presence of noise in the measurements makes it difficult to judge the confidence levels of the slopes that are calculated this way. In this paper, a statistics based approach for assessing the detection speeds that are achievable by ultrasonic corrosion monitoring systems is presented. Through the statistical analysis of experimental data, a state-of-the-art laboratory setup is shown to be able to detect both WTLRs and changes in WTLR that are of interest to industry (i.e. 0.1–0.2 mm/year) within 1–2 h.

  • Conference paper
    Todd MD, Leung M, Corcoran J, Cawley Pet al., 2018,

    Fatigue prognosis using the uncertainty-quantified failure forecast method

    , Pages: 129-137

    Several material failure modes such as fatigue have been noted to occur, after initiation phases, as a consequence of a positive-feedback mechanism. Positive feedback systems continually "accelerate" their underlying physics until failure, and as such, are unstable processes that result in the tendency of the rate of change in the observable data (or more generally, damage-sensitive features) to approach infinity. Models have been proposed based on this asymptotic property of positive feedback mechanisms for predicting the time to criticality, generally now known as the "failure forecast method". The typical implementation of this approach is to compute the inverse time rate-of-change in the features and linearly regress that data vs. time; inevitable uncertainties in the data, measurement process, or environmental contamination noise will corrupt the regression, leading to distributions in the parameters used to make the failure forecast. This study will look at a parametric implementation of the failure forecast method using a probability density function computed from the regression process and evaluating its predictive performance on fatigue data, considering regression window, sampling time, noise level, and predictor. A comparison is also drawn between the Failure Forecast Method and a conventional periodic inspection realization.

  • Journal article
    Wang Y, Zou F, Cegla F, 2017,

    Acoustic waveguides: an attractive alternative for accurate and robust contact thermometry

    , Sensors and Actuators A: Physical, Vol: 270, Pages: 84-88, ISSN: 0924-4247

    We report a robust and very precise method of measuring temperature using ultrasonic waves. Solid stainless steel waveguides are used to provide well-defined and stable ultrasonic wave propagation paths. Ultrasonic wave velocity is strongly temperature dependent. The arrival times of the ultrasonic wavepackets along a waveguide are used to infer the average temperature of the waveguide. Our ultrasonic temperature measurements exhibit a high precision (i.e. ±0.015 ⁰C) that is more than two times better than the quoted accuracy of 1/10 DIN resistance temperature detectors (RTDs). The responsiveness of the waveguides was also investigated. While ultrasonic measurements can be made at very high frequencies, the responsiveness is limited by the heat transfer into the active sensing area. The waveguides make it easy to customise the dimension of the active sensing area and a shorter response time than those of RTDs has been demonstrated. The technique presented in this paper is a robust and cost effective alternative to other contact temperature measurements.

  • Journal article
    Corcoran J, Raja S, Nagy PB, 2017,

    Improved thermoelectric power measurements using a four-point technique

    , NDT and E International, Vol: 94, Pages: 92-100, ISSN: 0963-8695

    The Seebeck coefficient of a material is dependent on its composition and microstructure and is consequently sensitive to service related material degradation; of particular interest is the sensitivity to thermal and irradiation embrittlement which may be exploited for the material characterisation of in service components. Conventionally, thermoelectric measurements are taken using a two-point contact technique which introduces a temperature differential in the test component through a heated ‘hot tip’ electrode; it is argued that measurements using this methodology are sensitive to the thermal contact resistance between the component and the electrodes. An alternative three- or four-point technique is proposed where heat is introduced to the component remotely which leads to much less sensitivity to contact condition. An experiment is presented that compares the two techniques and demonstrates the improved performance of the four-point technique. Aside from the improved accuracy, the modified technique also facilitates a ‘passive’ implementation that could be used from continuous monitoring of components in service.

  • Journal article
    Li Z, Dixon S, Cawley P, Jarvis R, Nagy PB, Cabeza Set al., 2017,

    Experimental studies of the magneto-mechanical memory (MMM) technique using permanently installed magnetic sensor arrays

    , NDT & E INTERNATIONAL, Vol: 92, Pages: 136-148, ISSN: 0963-8695
  • Journal article
    Li Z, Jarvis R, Nagy PB, Dixon S, Cawley Pet al., 2017,

    Experimental and simulation methods to study the Magnetic Tomography Method (MTM) for pipe defect detection

    , NDT & E INTERNATIONAL, Vol: 92, Pages: 59-66, ISSN: 0963-8695
  • Journal article
    Zou F, Cegla F, 2017,

    High Accuracy Ultrasonic Corrosion Rate Monitoring

    , Corrosion, Vol: 74, Pages: 2663-2679, ISSN: 0010-9312

    Ultrasonic testing with permanently installed transducers is widely used for online corrosion monitoring in the field. In this paper, a carefully optimized ultrasonic corrosion monitoring technique for carrying out measurements in the laboratory is presented. It is shown that for thickness measurements of a 10 mm steel component, a repeatability of ~40 nm can be maintained over the period of a day. The technique has been applied to monitoring the wall losses of a steel sample during forced and unforced corrosion experiments. All ultrasonic wall loss measurements reported have been validated by optical surface profile scans and, where possible, by analytical predictions based on Faraday’s law. Further analysis of the results shows that wall loss rates in the order of 0.1 – 0.2 mm/year can be detected within 1 – 2 hours. This state-of-the-art laboratory technique is highly accurate and responsive, and possesses the potential for becoming a powerful alternative corrosion assessment tool that is convenient to use.

  • Journal article
    Corcoran J, 2017,

    Rate based structural health monitoring using permanently installed sensors

    , Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 473, ISSN: 1364-5021

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of ‘trends’ in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are ‘self-accelerating’ with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  • Journal article
    Jones GA, Huthwaite P, 2017,

    Limited view X-ray tomography for dimensional measurements

    , NDT and E International, Vol: 93, Pages: 98-109, ISSN: 0963-8695

    The growing use of complex and irregularly shaped components for safety-critical applications has increasingly led to the adoption of X-ray CT as an NDE inspection tool. Standard X-ray CT methods require thousands of projections, each regularly distributed evenly through 360∘ to produce an accurate image. The time consuming acquisition of thousands of projections can lead to significant bottlenecks. Recent developments in medical imaging driven by both increasing computational power and the desire to reduce patient X-ray exposure have led to the development of a number of limited view CT methodologies. Thus far these limited view algorithms have been applied to basic synthetic data derived from simple medical phantoms. Here, we use experimental data to rigorously test the capability of limited view algorithms to accurately reconstruct and precisely measure the dimensional features of an additive manufactured sample and a turbine blade. Our findings highlight the importance of prior information in producing accurate reconstructions capable of significantly reducing X-ray projections by at least an order of magnitude. In the turbine blade example a dramatic reduction in projections from 5000 to 24 was observed while still demonstrating the same level of accuracy as standard CT methods. The findings of the study also suggest the importance of sample complexity and the presence of sparsity in the X-ray projections in order to maximise the capabilities of these limited algorithms. With the ever increasing computational power limited view CT algorithms offer a method for reducing data acquisition time and alleviating manufacturing throughput bottlenecks without compromising image accuracy and quality.

  • Journal article
    Egerton JS, Lowe MJS, Huthwaite P, Halai HVet al., 2017,

    A multiband approach for accurate numerical simulation of frequency dependent ultrasonic wave propagation in the time domain

    , JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol: 142, Pages: 1270-1280, ISSN: 0001-4966

    Finite element (FE) simulations are popular for studying propagation and scattering of ultrasonic waves in nondestructive evaluation. For a large number of degrees of freedom, time domain FE simulations are much more efficient than the equivalent frequency domain solution. However, unlike frequency domain simulations, time domain simulations are often poor at representing the speed and the attenuation of waves if the material is strongly damping or highly dispersive. Here, the authors demonstrate efficient and accurate representation of propagated and scattered waves, achieved by combining a set of time domain solutions that are obtained for a set of frequency ranges known as bands, such that, in combination, the authors' multiband solution accurately represents the whole wave spectrum. Consequently, high accuracy is achieved, at minor computational cost, using a modest number of bands. The multiband technique is implemented for ultrasonic wave propagation in highly attenuating polyethylene material, using three frequency bands, and can yield a reduction in empirical acoustic properties fractional error compared with respective time domain simulations, in propagation duration, of a factor of 1.4, and in full-width-half-maximum, of a factor of 10. Last, the accuracy of this approach is further exemplified in a wave scattering simulation.

  • Journal article
    Zou F, Cegla, 2017,

    High accuracy ultrasonic monitoring of electrochemical processes

    , Electrochemistry Communications, Vol: 82, Pages: 134-138, ISSN: 1388-2481

    Ultrasonic testing (UT) can be used for non-intrusive corrosion monitoring. In this paper, we firstly show that UT is not only capable of monitoring wall-thickness losses, but can also be exploited for tracking electrodeposition processes. All ultrasonic measurements reported are in agreement with analytical predictions and optical surface profile measurements. Since UT is highly sensitive to the coupling conditions and the relative acoustic properties of substrates and deposited materials, it can become an effective tool for studying the interface phenomena in which dissolution and deposition compete. Examples of these include passivation layer formation and scale deposition which are corrosion-inhibiting electrochemical processes.

  • Journal article
    Howard R, Cegla F, 2017,

    Detectability of corrosion damage with circumferential guided waves in reflection and transmission

    , NDT & E International, Vol: 91, Pages: 108-119, ISSN: 0963-8695

    There is an increasing interest in high frequency short range guided waves to screen or monitor for corrosion. This contrasts with long range guided waves (LRGWs) which screen pipes for large patches of corrosion and have been successfully used in corrosion management for the past twenty years. The fundamental setup described in this paper uses circumferential guided waves, which are excited at a single location on a pipe and travel around the pipe wall and are detected at the same location. The study uses a finite element model assisted method to evaluate the detection capability of two short range circumferential guided wave setups which use both the reflected and transmitted signals. The setups themselves consist of either an axial array of transducers, for monitoring, or a single transducer which axially scans a pipe. Both setups have an array or scan pitch between either adjacent transducers or measurements. The detection capability of the fundamental Lamb wave modes (A0 and S0) in both reflection and transmission have been compared, as well as a hybrid shear horizontal wave setup, which uses the SH0 mode in reflection and the SH1 mode in transmission. A sensitivity analysis was conducted using two separate methods to determine the probability of detection (POD) for either the reflection or transmission signals. Both methods determine a POD for a specific defect, noise level, and array or scan pitch. Probability images are produced which map the POD for a range of defect sizes. For the parameters investigated in this study, it was found that in transmission large diameter defects have a higher detectability, whereas deep, narrow diameter defects are more detectable in reflection. A generalised overview of the sensitivity of short range guided waves is presented by combining both the reflection and transmission PODs. The data fused sensitivity of the S0 and SH hybrid modes are given as 0.6% and 0.75% cross sectional area (CSA) respectively, allowing for the comp

  • Journal article
    Shi F, Lowe M, Craster R, 2017,

    Diffusely scattered and transmitted elastic waves by random rough solid-solid interfaces using an elastodynamic Kirchhoff approximation

    , PHYSICAL REVIEW B, Vol: 95, ISSN: 2469-9950

    Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ≤λ/3, correlation length λ0≥ wavelength λ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.

  • Journal article
    Jarvis R, Cawley P, Nagy P, 2017,

    Performance evaluation of a magnetic field measurement NDE technique using a model assisted probability of detection framework

    , NDT & E International, Vol: 91, Pages: 61-70, ISSN: 0963-8695

    Receiver Operating Characteristics (ROC) are a powerful tool used to evaluate the performance of NDE methods; however, the need to manufacture and scan many test pieces with realistic defects means that they are expensive and time-consuming to produce. Advances in computational power now mean that it is possible to use numerical models to greatly increase the efficiency of producing ROC for practical applications. A Model Assisted Probability of Detection (MAPOD) framework has been developed to predict the performance of magnetic field measurement NDE techniques. The MAPOD method is used to predict the performance of a promising new technique relying on the deflection of a current injected into a pipe at remote locations, and measurement of the resulting magnetic field perturbations due to defects. A significant proportion of pipes cannot be inspected by pigging methods, and external inspection often requires complete coating removal; therefore, an NDE method that functions outside pipe coatings and cladding is attractive. In this method, changes in the radial and axial components of the field are measured and attributed to defects, but a strong azimuthal component means that misalignment can give significant apparent radial and axial signals due to the azimuthal field apparently having a component in these directions. This requires that the second-order gradient of the magnetic field be measured to maximise sensitivity. Fluctuations in the sensitivity and orientation of the gradiometer during the scan are expected to determine the maximum sensitivity of the technique in most practical applications; however, the flexibility of the framework allows performance to be rapidly predicted and quantified for many test scenarios. Results suggest good detection performance for defects greater than 15% of the wall thickness (T = 7.1 mm) in a 6″ pipe with 2 A (200 A/m2) current injected when measuring above typical insulation thickness (25–50 mm).

  • Journal article
    Corcoran J, Nagy PB, Cawley P, 2017,

    Monitoring creep damage at a weld using a potential drop technique

    , INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, Vol: 153, Pages: 15-25, ISSN: 0308-0161

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=388&limit=20&page=3&respub-action=search.html Current Millis: 1725166073290 Current Time: Sun Sep 01 05:47:53 BST 2024