MRes

One year Master’s in Research

The Business School Master’s in Research (MRes) is a one year programme, providing an introduction to theory and research methods in Finance, Economics and Management, providing you with a solid foundation for your doctoral studies.

You are required to complete the following during your first year of the Doctoral programme.

Research methods modules

Core introductory modules, designed to provide a foundation in research tools:

This course provides students with a basic foundation in mathematics and statistics required to undertake further quantitative research methods courses. This course consists of two parts, statistics and mathematics. Topics covered include: matrix algebra; optimization; differential equations; random variables and probability distributions; moments of a random variable; probability distributions; joint, marginal and conditional distributions; functions and transformation of a random variable; hypothesis testing; univariate regression.

When starting new research, the first step is usually a literature review: scanning what is already known about a given topic and figuring out where the gaps are. However, novice researchers tend to be anything but systematic in their literature review: they have no method for scanning the literature, and they usually have little idea of what is relevant and what is not. The Systematic Review method opens a way to create research syntheses that add real value and novel insight – in a way that is potentially publishable in its own right.

You will study a selection of research methods modules from:

The purpose of this course is to provide a foundation in econometric theory and applications. The course starts from an introduction to econometrics, which may be familiar to you, and gradually builds up to advanced estimation and inference methods. Students will learn how to conduct and critique empirical studies in Finance, economics and related fields.

The module is intended for students with a prior knowledge of asset pricing theory, capital markets and econometrics, and will concentrate on discrete-time methods and use a use a variety of econometric techniques. The module will cover these econometric tools in order to empirically address meaningful economic questions.

This module will be an introduction to some of the most important themes for students wishing to conduct their own research in Empirical Corporate Finance. For other students, this module will help students gain a better understanding of research related to your own field. Topics covered include: regression refresher; causality and randomized experiments; instrumental variables; difference-in-difference, first differences, fixed effects; regression discontinuity; standard errors; event studies; discrete response models; matching methods.

The module covers research methods required in inductive and grounded theory building research. Covered methods include: process case research, inductive case research; interviewing techniques; content analysis; content coding and axial coding; event sequence analysis and associated synthesis techniques such as meta-summary, meta-synthesis and realist synthesis.

This module consists of two parts; experimental design and analysis, and quantitative research methods. The first part is an introduction for students who want to design and analyse behavioural experiments and will provide you with the skills to analyse these designs as well as interpret and evaluate your results. The second part of the course aims to give students an overview of key concepts in quantitative methods used in research, and develop an ability to interpret the results of their own research, as well as critically assess the findings presented in other studies. Students will uses SAS and STATA during this module.

Specialist modules

You will also select modules focusing on theory and application within your chosen area of research from:

The first part of this module deals with representative investors, portfolio choice and dynamic securities markets in discrete time before covering portfolio choice in continuous time and option pricing. The second part starts from the asset pricing implications of a general equilibrium Lucas-tree economy. Then, it discusses the main asset pricing puzzles implied by these economies. Finally, we will explore optimal portfolio choice, multiple trees economies and some of the latest attempts in the asset pricing literature to solve some of these puzzles.

The primary aim is to help develop students into successful consumer behaviour researchers. To achieve this, a thorough understanding of the relevant literature is essential and a number of key articles will be discussed in each session. In order to help prepare students for an academic career, the module includes identifying gaps in the literature, seeing both contributions and shortcomings in published work, coming up with rigid research ideas, and selling research ideas convincingly.

This module is taught in two parts, starting with a historical background, and then considering the theory of investment decisions, capital structure, financial innovation, and corporate governance.

This module introduces students to the major theoretical threads and debates in the field of entrepreneurship. Students will learn to make connections between theory and empirical research, practice critiquing and identifying insight in research, engage with fundamental debates in the field and formulate directions how the field may be further advanced.

This module will offer a thorough theoretical understanding of the key themes of innovation research, combined with practical insights into the challenges of innovation management in organizations. The class will prepare students to engage with fundamental debates in innovation research, to take stock of the state-of-the-art of the literature, and to formulate directions how the field may be further advanced.

This module offers an introduction to microeconomic theory. Students will consider the perfectly competitive case, analysing consumer, producer and equilibrium theory and the basic tools of game theory. Students then move to the imperfect competition case, analysing market power and asymmetric information. The fundamental concepts of microeconomic theory are discussed, and illustrated by examples from financial economics.

Organisational Behaviour (OB) is a vast and diverse field of study. It includes a wide range of topics across three levels of analysis – organisation, group, and individual. This module will facilitate an understanding of the field of OB with regard to its content domains and its approach to theory building and testing. Students will development key OB scholarship skills, such as the critique of papers, developing research questions, testable hypotheses, and research designs.

This module will provide an overview of some of the major theoretical perspectives that comprise strategy, including the related organisational theory (OT) literature. Students will examine and critique a different theoretical stream by analysing both classic and contemporary approaches. In doing so, participants are expected to gain an understanding of both the contributions and limitations of each body of research, and be able to use that knowledge to suggest extensions and future directions for each literature stream.

*The topics covered in each module are based on the current academic year and may be subject to change. The information is provided as a guide only.

 

Research project and assessment

You will develop your own research project, which is assessed via submission of a written thesis and an oral examination.

Operations Management electives

In addition to the modules offered within the Business School as part of the MRes programme, we have added elective modules from other faculties within Imperial College London, so that Operations Management students can benefit from specialised training across the University that is relevant to their research. Students will take the Research Methods modules within the Business School and can then take elective modules in relevant modules which may include:

  • Traffic Theory & Queuing Systems
  • Fundamentals of Statistical Inference
  • Applied Statistics
  • Computational Statistics
  • Machine Learning
  • Advanced Statistical Machine Learning and Pattern Recognition
  • Operations Research
  • Computing for Optimal Decisions
  • Computational Finance
  • Retail and Marketing Analytics
  • Digital Marketing Analytics
  • Logistics and Supply-chain Analytics
  • Workforce Analytics

*These modules are available subject to capacity and timetabling constraints in other faculties and are differently weighted to the MRes Business electives.