Publications from our Researchers

Several of our current PhD candidates and fellow researchers at the Data Science Institute have published, or in the proccess of publishing, papers to present their research.  

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Simpson AJ, Hekking P-P, Shaw DE, Fleming LJ, Roberts G, Riley JH, Bates S, Sousa AR, Bansal AT, Pandis I, Sun K, Bakke PS, Caruso M, Dahlén B, Dahlén S-E, Horvath I, Krug N, Montuschi P, Sandstrom T, Singer F, Adcock IM, Wagers SS, Djukanovic R, Chung KF, Sterk PJ, Fowler SJ, U-BIOPRED Study Groupet al., 2019,

    Treatable traits in the European U-BIOPRED adult asthma cohorts

    , Allergy, Vol: 74, Pages: 406-411, ISSN: 0105-4538
  • Journal article
    Oehmichen A, Hua K, Diaz Lopez JA, Molina-Solana M, Gomez-Romero J, Guo Y-Ket al., 2019,

    Not All Lies Are Equal. A Study Into the Engineering of Political Misinformation in the 2016 US Presidential Election

    , IEEE ACCESS, Vol: 7, Pages: 126305-126314, ISSN: 2169-3536
  • Conference paper
    Fernando S, Birch D, Molina-Solana M, McIlwraith D, Guo Yet al., 2019,

    Compositional Microservices for Immersive Social Visual Analytics

    , 23rd International Conference on the Information Visualisation (IV) - Incorporating Biomedical Visualization, Learning Analytics and Geometric Modelling and Imaging, Publisher: IEEE COMPUTER SOC, Pages: 216-223
  • Journal article
    Balaban G, Halliday BP, Costa CM, Bai W, Porter B, Rinaldi CA, Plank G, Rueckert D, Prasad SK, Bishop MJet al., 2018,

    Fibrosis Microstructure Modulates Reentry in Non-ischemic Dilated Cardiomyopathy: Insights From Imaged Guided 2D Computational Modeling

    , Frontiers in Physiology, Vol: 9, ISSN: 1664-042X

    Aims: Patients who present with non-ischemic dilated cardiomyopathy (NIDCM) andenhancement on late gadolinium magnetic resonance imaging (LGE-CMR), are at highrisk of sudden cardiac death (SCD). Further risk stratification of these patients basedon LGE-CMR may be improved through better understanding of fibrosis microstructure.Our aim is to examine variations in fibrosis microstructure based on LGE imaging, andquantify the effect on reentry inducibility and mechanism. Furthermore, we examine therelationship between transmural activation time differences and reentry.Methods and Results: 2D Computational models were created from a single short axisLGE-CMR image, with 401 variations in fibrosis type (interstitial, replacement) and density,as well as presence or absence of reduced conductivity (RC). Transmural activationtimes (TAT) were measured, as well as reentry incidence and mechanism. Reentrieswere inducible above specific density thresholds (0.8, 0.6 for interstitial, replacementfibrosis). RC reduced these thresholds (0.3, 0.4 for interstitial, replacement fibrosis) andincreased reentry incidence (48 no RC vs. 133 with RC). Reentries were classified as rotor,micro-reentry, or macro-reentry and depended on fibrosis micro-structure. Differencesin TAT at coupling intervals 210 and 500ms predicted reentry in the models (sensitivity89%, specificity 93%). A sensitivity analysis of TAT and reentry incidence showed thatthese quantities were robust to small changes in the pacing location.Conclusion: Computational models of fibrosis micro-structure underlying areas ofLGE in NIDCM provide insight into the mechanisms and inducibility of reentry, andtheir dependence upon the type and density of fibrosis. Transmural activation times,measured at the central extent of the scar, can potentially differentiate microstructureswhich support reentry.

  • Journal article
    de Montjoye Y-A, Gambs S, Blondel V, Canright G, de Cordes N, Deletaille S, Engø-Monsen K, Garcia-Herranz M, Kendall J, Kerry C, Krings G, Letouzé E, Luengo-Oroz M, Oliver N, Rocher L, Rutherford A, Smoreda Z, Steele J, Wetter E, Pentland AS, Bengtsson Let al., 2018,

    On the privacy-conscientious use of mobile phone data

    , Scientific Data, Vol: 5, ISSN: 2052-4463

    The breadcrumbs we leave behind when using our mobile phones—who somebody calls, for how long, and from where—contain unprecedented insights about us and our societies. Researchers have compared the recent availability of large-scale behavioral datasets, such as the ones generated by mobile phones, to the invention of the microscope, giving rise to the new field of computational social science.

  • Journal article
    Gomez-Romero J, Molina-Solana MJ, Oehmichen A, Guo Yet al., 2018,

    Visualizing large knowledge graphs: a performance analysis

    , Future Generation Computer Systems, Vol: 89, Pages: 224-238, ISSN: 0167-739X

    Knowledge graphs are an increasingly important source of data and context information in Data Science. A first step in data analysis is data exploration, in which visualization plays a key role. Currently, Semantic Web technologies are prevalent for modelling and querying knowledge graphs; however, most visualization approaches in this area tend to be overly simplified and targeted to small-sized representations. In this work, we describe and evaluate the performance of a Big Data architecture applied to large-scale knowledge graph visualization. To do so, we have implemented a graph processing pipeline in the Apache Spark framework and carried out several experiments with real-world and synthetic graphs. We show that distributed implementations of the graph building, metric calculation and layout stages can efficiently manage very large graphs, even without applying partitioning or incremental processing strategies.

  • Journal article
    Molina-Solana M, Kennedy M, Amador Diaz Lopez J, 2018,

    foo.castr: visualising the future AI workforce

    , Big Data Analytics, Vol: 3, ISSN: 2058-6345

    Organization of companies and their HR departments are becoming hugely affected by recent advancements in computational power and Artificial Intelligence, with this trend likely to dramatically rise in the next few years. This work presents foo.castr, a tool we are developing to visualise, communicate and facilitate the understanding of the impact of these advancements in the future of workforce. It builds upon the idea that particular tasks within job descriptions will be progressively taken by computers, forcing the shaping of human jobs. In its current version, foo.castr presents three different scenarios to help HR departments planning potential changes and disruptions brought by the adoption of Artificial Intelligence.

  • Conference paper
    Duan J, Schlemper J, Bai W, Dawes TJW, Bello G, Biffi C, Doumou G, De Marvao A, O’Regan DP, Rueckert Det al., 2018,

    Combining deep learning and shape priors for bi-ventricular segmentation of volumetric cardiac magnetic resonance images

    , MICCAI ShapeMI Workshop, Publisher: Springer Verlag, Pages: 258-267, ISSN: 0302-9743

    In this paper, we combine a network-based method with image registration to develop a shape-based bi-ventricular segmentation tool for short-axis cardiac magnetic resonance (CMR) volumetric images. The method first employs a fully convolutional network (FCN) to learn the segmentation task from manually labelled ground truth CMR volumes. However, due to the presence of image artefacts in the training dataset, the resulting FCN segmentation results are often imperfect. As such, we propose a second step to refine the FCN segmentation. This step involves performing a non-rigid registration with multiple high-resolution bi-ventricular atlases, allowing the explicit shape priors to be inferred. We validate the proposed approach on 1831 healthy subjects and 200 subjects with pulmonary hypertension. Numerical experiments on the two datasets demonstrate that our approach is capable of producing accurate, high-resolution and anatomically smooth bi-ventricular models, despite the artefacts in the input CMR volumes.

  • Conference paper
    Kermani NZ, Pavlidis S, Saqi M, Guo Y, Agapow P, Kuo C-H, Loza M, Baribaud F, Rowe A, Sousa A, De Meulder B, Lefaudeux D, Fleming L, Corfield J, Knowles R, Auffray C, Djukanovic R, Sterk PJ, Adcock I, Chung Fet al., 2018,

    Further resolution of non-T2 asthma subtypes from high-throughput sputum transciptomics data in U-BIOPRED

    , 28th International Congress of the European-Respiratory-Society (ERS), Publisher: European Respiratory Society, Pages: 1-3, ISSN: 0903-1936

    Background: Precision medicine of asthma requires understanding of its heterogeneity and molecular pathophysiology.Aim: Three sputum-derived transcriptomic clusters (TACs) were previously identified [Kuo at al. Eur Respir J.2017, 49] in the U-BIOPRED cohort: TAC1 consisting of T2 high patients with eosinophilia, TAC2 with neutrophilia and inflammasome activation and TAC3, a more heterogeneous cluster with mostly paucigranulocytic patients. We further refine TAC3.Methods: Gaussian mixture modelling for model-based clustering was applied to sputum gene expression of 104 asthmatic participants from the adult cohort to substructure TAC3. Gene set variation analysis (GSVA) was used to explore the enrichment of gene signatures across the TACs.Results: We again produce the three TACs (TAC1 N=23, TAC2 N=24) but TAC3 was further split into two groups (TAC3a N=28, TAC3b N=29), distinguished by distinct neutrophils and macrophages density and enrichment of IL13 stimulation, inflammasome activation and OXPHOS gene signatures (Figure), as well as IL-4 and LPS-stimulated macrophage gene signatures. However, there were no distinguishing clinical features.Conclusion: Identification of sub-structure of sputum TACs, particularly of TAC3, will help towards improved targeted therapies.

  • Journal article
    Brandsma J, Goss VM, Yang X, Bakke PS, Caruso M, Chanez P, Dahlen S-E, Fowler SJ, Horvath I, Krug N, Montuschi P, Sanak M, Sandstrom T, Shaw DE, Chung KF, Singer F, Fleming LJ, Sousa AR, Pandis I, Bansal AT, Sterk PJ, Djukanovic R, Postle ADet al., 2018,

    Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers

    , Metabolomics, Vol: 14, ISSN: 1573-3882

    BackgroundLung epithelial lining fluid (ELF)—sampled through sputum induction—is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood.ObjectivesTo characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort.MethodsInduced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.ResultsThe induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender.ConclusionsWe provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.

  • Journal article
    Dolan D, Jensen H, Martinez Mediano P, Molina-Solana MJ, Rajpal H, Rosas De Andraca F, Sloboda JAet al., 2018,

    The improvisational state of mind: a multidisciplinary study of an improvisatory approach to classical music repertoire performance

    , Frontiers in Psychology, Vol: 9, ISSN: 1664-1078

    The recent re-introduction of improvisation as a professional practice within classical music, however cautious and still rare, allows direct and detailed contemporary comparison between improvised and “standard” approaches to performances of the same composition, comparisons which hitherto could only be inferred from impressionistic historical accounts. This study takes an interdisciplinary multi-method approach to discovering the contrasting nature and effects of prepared and improvised approaches during live chamber-music concert performances of a movement from Franz Schubert’s “Shepherd on the Rock”, given by a professional trio consisting of voice, flute, and piano, in the presence of an invited audience of 22 adults with varying levels of musical experience and training. The improvised performances were found to be differ systematically from prepared performances in their timing, dynamic, and timbral features as well as in the degree of risk-taking and “mind reading” between performers including during moments of added extemporised notes. Post-performance critical reflection by the performers characterised distinct mental states underlying the two modes of performance. The amount of overall body movements was reduced in the improvised performances, which showed less unco-ordinated movements between performers when compared to the prepared performance. Audience members, who were told only that the two performances would be different, but not how, rated the improvised version as more emotionally compelling and musically convincing than the prepared version. The size of this effect was not affected by whether or not the audience could see the performers, or by levels of musical training. EEG measurements from 19 scalp locations showed higher levels of Lempel-Ziv complexity (associated with awareness and alertness) in the improvised version in both performers and audience. Results are discussed in terms of their potential

  • Conference paper
    Alansary A, Le Folgoc L, Vaillant G, Oktay O, Li Y, Bai W, Passerat-Palmbach J, Guerrero R, Kamnitsas K, Hou B, McDonagh S, Glocker B, Kainz B, Rueckert Det al., 2018,

    Automatic view planning with multi-scale deep reinforcement learning agents

    , International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Publisher: Springer Verlag, Pages: 277-285, ISSN: 0302-9743

    We propose a fully automatic method to find standardizedview planes in 3D image acquisitions. Standard view images are impor-tant in clinical practice as they provide a means to perform biometricmeasurements from similar anatomical regions. These views are often constrained to the native orientation of a 3D image acquisition. Navigating through target anatomy to find the required view plane is tedious and operator-dependent. For this task, we employ a multi-scale reinforcement learning (RL) agent framework and extensively evaluate several DeepQ-Network (DQN) based strategies. RL enables a natural learning paradigm by interaction with the environment, which can be used to mimic experienced operators. We evaluate our results using the distance between the anatomical landmarks and detected planes, and the angles between their normal vector and target. The proposed algorithm is assessed on the mid-sagittal and anterior-posterior commissure planes of brain MRI, and the 4-chamber long-axis plane commonly used in cardiac MRI, achieving accuracy of 1.53mm, 1.98mm and 4.84mm, respectively.

  • Conference paper
    Tarroni G, Oktay O, Sinclair M, Bai W, Schuh A, Suzuki H, de Marvao A, O'Regan D, Cook S, Rueckert Det al., 2018,

    A comprehensive approach for learning-based fully-automated inter-slice motion correction for short-axis cine cardiac MR image stacks

    , 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) / 8th Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 268-276, ISSN: 0302-9743

    In the clinical routine, short axis (SA) cine cardiac MR (CMR) image stacks are acquired during multiple subsequent breath-holds. If the patient cannot consistently hold the breath at the same position, the acquired image stack will be affected by inter-slice respiratory motion and will not correctly represent the cardiac volume, introducing potential errors in the following analyses and visualisations. We propose an approach to automatically correct inter-slice respiratory motion in SA CMR image stacks. Our approach makes use of probabilistic segmentation maps (PSMs) of the left ventricular (LV) cavity generated with decision forests. PSMs are generated for each slice of the SA stack and rigidly registered in-plane to a target PSM. If long axis (LA) images are available, PSMs are generated for them and combined to create the target PSM; if not, the target PSM is produced from the same stack using a 3D model trained from motion-free stacks. The proposed approach was tested on a dataset of SA stacks acquired from 24 healthy subjects (for which anatomical 3D cardiac images were also available as reference) and compared to two techniques which use LA intensity images and LA segmentations as targets, respectively. The results show the accuracy and robustness of the proposed approach in motion compensation.

  • Conference paper
    Qin C, Bai W, Schlemper J, Petersen SE, Piechnik SK, Neubauer S, Rueckert Det al., 2018,

    Joint motion estimation and segmentation from undersampled cardiac MR image

    , Machine Learning for Medical Image Reconstruction Workshop, Pages: 55-63, ISSN: 0302-9743

    © 2018, Springer Nature Switzerland AG. Accelerating the acquisition of magnetic resonance imaging (MRI) is a challenging problem, and many works have been proposed to reconstruct images from undersampled k-space data. However, if the main purpose is to extract certain quantitative measures from the images, perfect reconstructions may not always be necessary as long as the images enable the means of extracting the clinically relevant measures. In this paper, we work on jointly predicting cardiac motion estimation and segmentation directly from undersampled data, which are two important steps in quantitatively assessing cardiac function and diagnosing cardiovascular diseases. In particular, a unified model consisting of both motion estimation branch and segmentation branch is learned by optimising the two tasks simultaneously. Additional corresponding fully-sampled images are incorporated into the network as a parallel sub-network to enhance and guide the learning during the training process. Experimental results using cardiac MR images from 220 subjects show that the proposed model is robust to undersampled data and is capable of predicting results that are close to that from fully-sampled ones, while bypassing the usual image reconstruction stage.

  • Conference paper
    Schlemper J, Castro DC, Bai W, Qin C, Oktay O, Duan J, Price AN, Hajnal J, Rueckert Det al., 2018,

    Bayesian deep learning for accelerated MR image reconstruction

    , International Workshop on Machine Learning for Medical Image Reconstruction, Publisher: Springer, Cham, Pages: 64-71, ISSN: 0302-9743

    Recently, many deep learning (DL) based MR image reconstruction methods have been proposed with promising results. However, only a handful of work has been focussing on characterising the behaviour of deep networks, such as investigating when the networks may fail to reconstruct. In this work, we explore the applicability of Bayesian DL techniques to model the uncertainty associated with DL-based reconstructions. In particular, we apply MC-dropout and heteroscedastic loss to the reconstruction networks to model epistemic and aleatoric uncertainty. We show that the proposed Bayesian methods achieve competitive performance when the test images are relatively far from the training data distribution and outperforms when the baseline method is over-parametrised. In addition, we qualitatively show that there seems to be a correlation between the magnitude of the produced uncertainty maps and the error maps, demonstrating the potential utility of the Bayesian DL methods for assessing the reliability of the reconstructed images.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=607&limit=15&page=5&respub-action=search.html Current Millis: 1623521917359 Current Time: Sat Jun 12 19:18:37 BST 2021