References and abstracts to PhD theses are also available, and some of the later publications can be downloaded in pdf format.

A review of the state of the art of guided waves for long range inspection is also available.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Shipway N, Barden T, Huthwaite P, Lowe Met al.,

    Automated defect detection for Fluorescent Penetrant Inspection using Random Forest

    , NDT and E International, ISSN: 0963-8695
  • Journal article
    Huthwaite P, 2016,

    Improving accuracy through density correction in guided wave tomography

    , Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 472, ISSN: 1364-5021

    The accurate quantification of wall loss caused by corrosion is critical to the reliable life estimation of pipes and pressure vessels. Traditional thickness gauging by scanning a probe is slow and requires access to all points on the surface; this is impractical in many cases as corrosion often occurs where access is restricted, such as beneath supports where water collects. Guided wave tomography presents a solution to this; by transmitting guided waves through the region of interest and exploiting their dispersive nature, it is possible to build up a map of thickness. While the best results have been seen when using the fundamental modes A0 and S0 at low frequency, the complex scattering of the waves causes errors within the reconstruction. It is demonstrated that these lead to an underestimate in wall loss for A0 but an overestimate for S0. Further analysis showed that this error was related to density variation, which was proportional to thickness. It was demonstrated how this could be corrected for in the reconstructions, in many cases resulting in the near-elimination of the error across a range of defects, and greatly improving the accuracy of life estimates from guided wave tomography.

  • Journal article
    Hernando Quintanilla F, Lowe MJS, Craster RV, 2015,

    Full 3D dispersion curve solutions for guided waves in generally anisotropic media

    , Journal of Sound and Vibration, Vol: 363, Pages: 545-559, ISSN: 1095-8568

    Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials.These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.

  • Journal article
    Leinov E, Lowe, Cawley, 2015,

    Ultrasonic isolation of buried pipes

    , Journal of Sound and Vibration, ISSN: 1095-8568

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10–35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3–1.2 dB m⁻¹ for loose and compacted sand conditions, compared to measured attenuation of 1.7–4.7 dB m⁻¹ in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increas

  • Journal article
    Quintanilla FH, Fan Z, Lowe MJS, Craster RVet al., 2015,

    Guided waves' dispersion curves in anisotropic viscoelastic single- and multi-layered media

    , Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, Vol: 471, ISSN: 1471-2946

    Guided waves propagating in lossy media are encountered in many problems across different areas of physics such as electromagnetism, elasticity and solid-state physics. They also constitute essential tools in several branches of engineering, aerospace and aircraft engineering, and structural health monitoring for instance. Waveguides also play a central role in many non-destructive evaluation applications. It is of paramount importance to accurately represent the material of the waveguide to obtain reliable and robust information about the guided waves that might be excited in the structure. A reasonable approximation to real solids is the perfectly elastic approach where the frictional losses within the solid are ignored. However, a more realistic approach is to represent the solid as a viscoelastic medium with attenuation for which the dispersion curves of the modes are, in general, different from their elastic counterparts. Existing methods are capable of calculating dispersion curves for attenuated modes but they can be troublesome to find and the solutions are not as reliable as in the perfectly elastic case. In this paper, in order to achieve robust and accurate results for viscoelasticity a spectral collocation method is developed to compute the dispersion curves in generally anisotropic viscoelastic media in flat and cylindrical geometry. Two of the most popular models to account for material damping, Kelvin–Voigt and Hysteretic, are used in various cases of interest. These include orthorhombic and triclinic materials in single- or multi-layered arrays. Also, and due to its importance in industry, a section is devoted to pipes filled with viscous fluids. The results are validated by comparison with those from semi-analytical finite-element simulations.

  • Journal article
    Van Pamel A, Brett CR, Huthwaite P, Lowe MJSet al., 2015,

    Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions

    , Journal of the Acoustical Society of America, Vol: 138, Pages: 2326-2336, ISSN: 0001-4966

    Finite element modelling is a promising tool for further progressing the development of ultrasonic non-destructive evaluation of polycrystalline materials. Yet its widespread adoption has been held back due to a high computational cost, which has restricted current works to relatively small models and to two dimensions. However, the emergence of sufficiently powerful computing, such as highly efficient solutions on graphics processors, is enabling a step improvement in possibilities. This article aims to realise those capabilities to simulate ultrasonic scattering of longitudinal waves in an equiaxed polycrystalline material in both two (2D) and three dimensions (3D). The modelling relies on an established Voronoi approach to randomly generate a representative grain morphology. It is shown that both 2D and 3D numerical data show good agreement across a range of scattering regimes in comparison to well-established theoretical predictions for attenuation and phase velocity. In addition, 2D parametric studies illustrate the mesh sampling requirements for two different types of mesh to ensure modelling accuracy and present useful guidelines for future works. Modelling limitations are also shown. It is found that 2D models reduce the scattering mechanism in the Rayleigh regime.

  • Journal article
    Pettit JR, Walker AE, Lowe MJS, 2015,

    Improved Detection of Rough Defects for Ultrasonic Nondestructive Evaluation Inspections Based on Finite Element Modeling of Elastic Wave Scattering

    , IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol: 62, Pages: 1797-1808, ISSN: 0885-3010

    Defects which possess rough surfaces greatly affectultrasonic wave scattering behaviour, usually reducing the magnitudeof reflected signals. Understanding and accurately predictingthe influence of roughness on signal amplitudes is crucial,especially in Non-Destructive Evaluation (NDE) for the inspectionof safety-critical components. An extension of Kirchhoff theoryhas formed the basis for many practical applications; however, itis widely recognised that these predictions are pessimistic owingto analytical approximations. A numerical full field modellingapproach does not fall victim to such limitations. Here, a FiniteElement (FE) modelling approach is used to develop a realisticmethodology for the prediction of expected back-scattering fromrough defects. The ultrasonic backscatter from multiple roughsurfaces defined by the same statistical class is calculated fornormal and oblique incidence. Results from FE models arecompared with Kirchhoff theory predictions and experimentalmeasurements in order to establish confidence in the newapproach. At lower levels of roughness excellent agreement isobserved between Kirchhoff theory, FE and experimental data,whilst at higher values the pessimism of Kirchhoff theory isconfirmed. An important distinction is made between the total,coherent and diffuse signals and it is observed, significantly, thatthe total signal amplitude is representative of the informationobtained during an inspection. This analysis provides a robustbasis for a less sensitive, yet safe, threshold for inspection ofrough defects.

  • Journal article
    Dobson, Cawley P, 2015,

    Independent Component Analysis for Improved Defect Detection in Guided Wave Monitoring

    , Proceedings of the Institution of Electrical Engineers, Vol: 104, Pages: 1620-1631, ISSN: 0020-3270

    Guided wave sensors are widely used in a number of industries and have found particular application in the oil and gas industry for the inspection of pipework. Traditionally this type of sensor was used for one-off inspections, but in recent years there has been a move towards permanent installation of the sensor. This has enabled highly repeatable readings of the same section of pipe, potentially allowing improvements in defect detection and classification. This paper proposes a novel approach using independent component analysis to decompose repeat guided wave signals into constituent independent components. This separates the defect from coherent noise caused by changing environmental conditions, improving detectability. This paper demonstrates independent component analysis applied to guided wave signals from a range of industrial inspection scenarios. The analysis is performed on test data from pipe loops that have been subject to multiple temperature cycles both in undamaged and damaged states. In addition to processing data from experimental damaged conditions, simulated damage signals have been added to “undamaged” experimental data, so enabling multiple different damage scenarios to be investigated. The algorithm has also been used to process guided wave signals from finite element simulations of a pipe with distributed shallow general corrosion, within which there is a patch of severe corrosion. In all these scenarios, the independent component analysis algorithm was able to extract the defect signal, rejecting coherent noise.

  • Journal article
    Fan Z, Mark AF, Lowe MJS, Withers PJet al., 2015,

    Nonintrusive Estimation of Anisotropic Stiffness Maps of Heterogeneous Steel Welds for the Improvement of Ultrasonic Array Inspection

    , IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, Vol: 62, Pages: 1530-1543, ISSN: 0885-3010

    —It is challenging to inspect austenitic welds nondestructivelyusing ultrasonic waves because the spatially varyingelastic anisotropy of weld microstructures can lead to thedeviation of ultrasound. Models have been developed to predictthe propagation of ultrasound in such welds once the weldstiffness heterogeneity is known. Consequently, it is desirableto have a means of measuring the variation in elastic anisotropyexperimentally so as to be able to correct for deviationsin ultrasonic pathways for the improvement of weld inspection.This paper investigates the use of external nonintrusiveultrasonic array measurements to construct such weld stiffnessmaps, representing the orientation of the stiffness tensor accordingto location in the weld cross section. An inverse modelbased on a genetic algorithm has been developed to recover asmall number of key parameters in an approximate model ofthe weld map, making use of ultrasonic array measurements.The approximate model of the weld map uses the Modeling ofanIsotropy based on Notebook of Arcwelding (MINA) formulation,which is one of the representations that has been proposedby other researchers to provide a simple, yet physicallybased, description of the overall variations of orientations ofthe stiffness tensors over the weld cross section. The choice ofsensitive ultrasonic modes as well as the best monitoring positionshave been discussed to achieve a robust inversion. Experimentshave been carried out on a 60-mm-thick multipasstungsten inert gas (TIG) weld to validate the findings of themodeling, showing very good agreement. This work shows thatultrasonic array measurements can be used on a single side ofa butt-welded plate, such that there is no need to access theremote side, to construct an approximate but useful weld mapof the spatial variations in anisotropic stiffness orientation thatoccur within the weld.

  • Journal article
    Leinov E, Lowe MJS, Cawley P, 2015,

    Investigation of guided wave propagation and attenuation in pipe buried in sand

    , JOURNAL OF SOUND AND VIBRATION, Vol: 347, Pages: 96-114, ISSN: 0022-460X
  • Journal article
    Seher M, Huthwaite P, Lowe MJS, Nagy PBet al., 2015,

    Model-Based Design of Low Frequency Lamb Wave EMATs for Mode Selectivity

    , Journal of Nondestructive Evaluation, Vol: 34, ISSN: 1573-4862

    A low-frequency, omni-directional A0 Lamb wave ElectroMagnetic Acoustic Transducer (EMAT) is developed for applications in guided wave tomography, operating at 50 kHz on a 10 mm thick steel plate. The key objective is to excite an acceptably pure A0 wave mode in relation to the S0 mode, which can also be present at this operating point and is desired to be suppressed by approximately 30 dB. For that, a parametric Finite Element (FE) model of the design concept is implemented in a commercially available FE software, where the bias magnetic field is calculated initially, then combined with the eddy current caused by the induction coil to produce a force. A numerical optimization process employing a genetic algorithm is set up and the EMAT design is optimized to yield an improved A0 mode selectivity. The parameters subjected to optimization are the magnet diameter and the magnet lift-off, which control the direction of the exciting force in the skin depth layer and therefore the mode selectivity. Although there are three possible electromagnetic acoustic interaction mechanisms, the optimisation considers only the Lorentz force, as its performance surface contains a clear optimum and from the optimised design a physical prototype is built. The FE model is validated against measurements on an aluminium plate for the Lorentz force excitation mechanism and on a steel plate for both the Lorentz and magnetisation force. For the steel plate, it is found that only considering the Lorentz force leads to a significant overestimation of the mode selectivity, as the S0 amplitude is underestimated by the Lorentz force, but the A0 amplitude remains mainly uninfluenced. Further, it has been found that additionally including the magnetisation force into the optimisation leads to a better mode selectivity, however, the optimisation drives the optimum to a minimum magnet diameter and therefore reduces the EMAT sensitivity. In a numerical study robustness is shown for fair

  • Journal article
    Lan B, lowe M, dunne F, 2015,

    A generalized spherical harmonic deconvolution to obtain texture of cubic materials from ultrasonic wave speed

    , Journal of the Mechanics and Physics of Solids, Vol: 83, Pages: 221-242, ISSN: 0022-5096

    In this paper, the spherical harmonic convolution approach for HCP materials (Lan et al., 2015) is extended into a generalised form for the principal purpose of bulk texture determination in cubic polycrystals from ultrasonic wave speed measurements. It is demonstrated that the wave speed function of a general single crystal convolves with the polycrystal Orientation Distribution Function (ODF) to make the resultant polycrystal wave speed function such that when the three functions are expressed in harmonic expansions, the coefficients of any one function may be determined from the coefficients of the other two. All three Euler angles are taken into account in the description of the ODF such that the theorem applies for all general crystal systems.The forward problem of predicting polycrystal wave speed with knowledge of single crystal properties and the ODF is solved for all general cases, with validation carried out on cubic textures showing strong sensitivity to texture and excellent quantitative accuracy in predicted wave speed amplitudes. Importantly, it is also revealed by the theorem that the cubic structure is one of only two crystal systems (the other being HCP) whose orientation distributions can be inversely determined from polycrystal wave velocities by virtue of their respective crystal symmetries. Proof of principle is then established by recovering the ODFs of representative cubic textures solely from the wave velocities generated from a computational model using these texture inputs, and excellent accuracies are achieved in the recovered ODF coefficients as well as the resultant pole figures. Hence the methodology is argued to provide a powerful technique for wave propagation studies and bulk texture measurement in cubic polycrystals and beyond.Keywords Texture; Generalised spherical convolution; Ultrasound; Cubic polycrystals

  • Journal article
    Lan B, Lowe M, DUNNE F, 2015,

    A spherical harmonic approach for the determination of HCP texture from ultrasound: A solution to the inverse problem

    , Journal of the Mechanics and Physics of Solids, Vol: 83, Pages: 179-198, ISSN: 0022-5096

    A new spherical convolution approach has been presented which couples HCP single crystal wave speed (the kernel function) with polycrystal c-axis pole distribution function to give the resultant polycrystal wave speed response. The three functions have been expressed as spherical harmonic expansions thus enabling application of the de-convolution technique to enable any one of the three to be determined from knowledge of the other two. Hence, the forward problem of determination of polycrystal wave speed from knowledge of single crystal wave speed response and the polycrystal pole distribution has been solved for a broad range of experimentally representative HCP polycrystal textures. The technique provides near-perfect representation of the sensitivity of wave speed to polycrystal texture as well as quantitative prediction of polycrystal wave speed. More importantly, a solution to the inverse problem is presented in which texture, as a c-axis distribution function, is determined from knowledge of the kernel function and the polycrystal wave speed response. It has also been explained why it has been widely reported in the literature that only texture coefficients up to 4th degree may be obtained from ultrasonic measurements. Finally, the de-convolution approach presented provides the potential for the measurement of polycrystal texture from ultrasonic wave speed measurements.Keywords Texture; Spherical harmonics; Ultrasound; HCP polycrystals

  • Journal article
    Shi F, Choi W, Lowe MJS, Skelton EA, Craster RVet al., 2015,

    The validity of Kirchhoff theory for scattering of elastic waves from rough surfaces

    , PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Vol: 471, ISSN: 1364-5021
  • Journal article
    Huthwaite P, Seher M, 2015,

    Robust Helical Path Separation for Thickness Mapping of Pipes by Guided Wave Tomography

    , IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol: 62, Pages: 927-938, ISSN: 1525-8955

    Pipe wall loss caused by corrosion can be quantifiedacross an area by transmitting guided Lamb waves throughthe region and measuring the resulting signals. Typically thedispersive relationship for these waves, which means thatwave velocity is a known function of thickness, is exploited,enabling the wall thickness to be determined from a velocityreconstruction. The accuracy and quality of this reconstructionis commonly limited by the angle of view available from thetransducer arrays. These arrays are often attached as a pairof ring arrays on either side of the inspected region, and dueto the cylindrical nature of the pipe, waves are able to travelin an infinite number of helical paths between any two transducers.The first arrivals can be separated relatively easily bytime gating, but by using just these components the angle ofview is severely restricted. To improve the viewing angle, it isnecessary to separate the wavepackets. This paper provides anoutline of a separation approach: initially the waves are backpropagatedto their source to align the different signals, then afiltering technique is applied to select the desired components.The technique is applied to experimental data and demonstratedto robustly separate the signals

  • Journal article
    Quintanilla FH, Lowe MJS, Craster RV, 2015,

    Modeling guided elastic waves in generally anisotropic media using a spectral collocation method

    , Journal of the Acoustical Society of America, Vol: 137, Pages: 1180-1194, ISSN: 0001-4966

    Guided waves are now well established for some applications in the non-destructive evaluation of structures and offer potential for deployment in a vast array of other cases. For their development, it is important to have reliable and accurate information about the modes that propagate for particular waveguide structures. Essential information that informs choices of mode transducer, operating frequencies, and interpretation of signals, among other issues, is provided by the dispersion curves of different modes within various combinations of geometries and materials. In this paper a spectral collocation method is successfully used to handle the more complicated and realistic waveguide problems that are required in non-destructive evaluation; many pitfalls and limitations found in root-finding routines based on the partial wave method are overcome by using this approach. The general cases presented cover anisotropic homogeneous perfectly elastic materials in flat and cylindrical geometry. Non-destructive evaluation applications include complex waveguide structures, such as single or multi-layered fiber composites, lined, bonded and buried structures. For this reason, arbitrarily multi-layered systems with both solid and fluid layers are also addressed as well as the implementation of interface models of imperfect boundary conditions between layers.

  • Conference paper
    Liu C, Dobson J, Cawley P, 2015,

    Practical Evaluation of SHM Damage Detection Under Complex Environmental Conditions Using Receiver Operating Characteristics

    , 10th International Workshop on Structural Health Monitoring (IWSHM), Publisher: DESTECH PUBLICATIONS, INC, Pages: 1949-1956
  • Conference paper
    Dobson J, Cawley P, 2015,

    Independent Component Analysis for Improved Defect Detection in Guided Wave

    , 10th International Workshop on Structural Health Monitoring (IWSHM), Publisher: DESTECH PUBLICATIONS, INC, Pages: 1878-1885
  • Conference paper
    Quintanilla FH, Lowe M, Craster R, 2015,

    Dispersion Curves for Guided Elastic Waves in Multilayered Anisotropic Media Generated with the Spectral Method

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 739-745, ISSN: 0094-243X
  • Conference paper
    Van Pamel A, Brett CR, Lowe MJS, 2015,

    An Initial Investigation into Pseudo-Coloring for Ultrasonic NDE of Polycrystalline Materials

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1031-1036, ISSN: 0094-243X
  • Conference paper
    Van Pamel A, Huthwaite P, Brett CR, Lowe MJSet al., 2015,

    A Finite Element Model Investigation of Ultrasonic Array Performance for Inspecting Polycrystalline Materials

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1007-1014, ISSN: 0094-243X
  • Conference paper
    Pettit JR, Walker AE, Lowe MJS, 2015,

    Modelling NDE Pulse-Echo inspection Of Misorientated Planar Rough Defects Using An Elastic Finite Element Method

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1730-1737, ISSN: 0094-243X
  • Conference paper
    Huthwaite P, Shi F, Van Pamel A, Lowe MJSet al., 2015,

    High-Speed GPU-Based Finite Element Simulations for NDT

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1815-1819, ISSN: 0094-243X
  • Conference paper
    Shi F, Choi W, Skelton E, Lowe M, Craster Ret al., 2015,

    Investigation of the Validity of the Elastic Kirchhoff Approximation for Rough Cracks Using a Finite Element Approach

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 1722-1729, ISSN: 0094-243X
  • Conference paper
    Seher M, Huthwaite P, Lowe M, Cawley Pet al., 2015,

    Experimental Study of A0 Lamb Wave Tomography

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 245-253, ISSN: 0094-243X
  • Conference paper
    Corcoran J, Davies CM, Nagy PB, Cawley Pet al., 2015,

    Potential Drop Strain Measurement for Creep Monitoring

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 917-925, ISSN: 0094-243X
  • Conference paper
    Leinov E, Cawley P, Lowe MJS, 2015,

    Guided Wave Attenuation in Pipes Buried in Sand

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 227-236, ISSN: 0094-243X
  • Conference paper
    Pettitt JR, Walker A, Lowe MJS, 2015,

    An optimised stiffness reduction method for simulating infinite elastic space using commercial Finite Elements codes

    , 13th Anglo-French Physical Acoustics Conference (AFPAC), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588
  • Conference paper
    Huthwaite P, Seher M, 2015,

    Helical Path Separation For Guided Wave Tomography

    , 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Publisher: AMER INST PHYSICS, Pages: 761-770, ISSN: 0094-243X
  • Journal article
    Van Pamel A, Brett CR, Lowe MJS, 2014,

    A Methodology for Evaluating Detection Performance of Ultrasonic Array Imaging Algorithms for Coarse-Grained Materials

    , IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, Vol: 61, Pages: 2042-2053, ISSN: 0885-3010

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=388&limit=30&respub-action=search.html Current Millis: 1571747071265 Current Time: Tue Oct 22 13:24:31 BST 2019