Electives

Electives

Tailor your learning to meet your career ambitions and match your interests through a choice of electives. You will take four electives (if you undertake the Applied Project), or three electives (if you undertake the Research Project), from the following elective modules. All students are required to take at least one key elective.

Key electives

This module aims to provide students with more advanced tools of time series and econometrics than the Financial Statistics module. Applications to asset pricing and risk management will also be covered.

If you aspire to be a quantitative analyst in the equity derivative area, this elective is a must. It will challenge you to expand your knowledge beyond the Black-Scholes model and apply quantitative tools to the pricing of exotic options. The elective also introduces some of the more technical and theoretical aspects of option pricing.

This module provides insight into financial trading strategies from an industry practitioner’s perspective. The module covers the wide spectrum of strategies across asset classes and hedge fund styles with an emphasis on investment /arbitrage opportunity and risk management. The module also includes quantitative pricing models with backtesting in Python across different market regimes. The module aims to study trading strategies in a non-technical intuitive manner using a “first principles” approach.

In this elective you will analyse banks’ main risks and activities on both their assets and liabilities, including off-balance sheet risks and financial globalisation, with special emphasis on the effects and implications of bank regulation and monetary policy. You will also study issues such as the determinants and consequences of financial crises and come to understand interactions between financial globalisation and banks.

Fixed income securities make up a very substantial proportion of all investments and financing strategies in today’s financial markets. The need to price and hedge this array of products accurately has led to a prolific literature in the area. The module covers the main continuous-time term structure models and valuation techniques.

This elective allows you to experience finance in a different economy. It is taught in two parts with the first part delivered online and the second part is an international study trip. Traditional lectures will be complemented by guest speakers, company visits and experiential learning activities. The class of 2016-17 travelled to Dubai for an intensive study experience in the capital of an emerging economy.

There is an additional cost to students to join this international elective. The cost is estimated to be approximately £1,200 – £1,500 – but this is subject to change.

This is an advanced elective in investments and portfolio management. You will discuss the key trading strategies used by hedge funds and demystify the secret world of active investing. The elective combines the latest research with real-world examples and explores several different strategies in depth, including fundamental tools for investment management, dynamic portfolio choice, equity strategies, macro strategies, yield curve logic and arbitrage strategies.

This module aims to introduce you to areas of financial planning that are more specific to private wealth management. It will introduce you to the types of client, and their respective investment needs and look at issues such as succession planning and multi-jurisdiction tax planning. Finally it examines the role of alternative investments (hedge funds, real estate and private equity) in building a diversified investment strategy.

Other electives

This module addresses the value creation process and examines the validity and limits of value creation in the context of corporate restructuring. You will analyse traditional valuation models and combine different pricing frameworks in valuing a number of entities with different investment and financing characteristics. The module is highly participative and the extensive use of real-world cases guides you through the theory and application of valuation models highlighting their strengths and weaknesses.

Over the past few years, there has been an explosion of interest in the use of large datasets and new empirical techniques to make financial decisions of all kinds. In this elective we examine how the combination of large datasets, empirical techniques including machine learning, and insights from behavioural finance are helping in making more efficient financial decisions. Two areas in which progress has been especially rapid are credit analytics (predicting default in personal loans, mortgages, and firms), and asset management. This elective focuses on these specific markets, considering them from supply, demand, and regulatory perspectives. You will build empirical models to illustrate important concepts throughout the elective.

Big Data in Finance II builds on and complements insights from Big Data in Finance I. The module will focus on three key techniques in Big Data analysis and machine learning, and their applications to finance. First, we explore unsupervised machine learning models (e.g. clustering algorithms) and their applications to recommendation algorithms in finance. Second, expanding the introductory material on neural networks in Big Data in Finance I, the module will develop this material further to cover Deep Learning techniques, which will then, as in Big Data in Finance I, be applied to credit scoring and/or portfolio choice problems. Third, the module will introduce and discuss reinforcement learning models, with potential applications to portfolio selection and trading strategies.

This elective provides a view on innovative techniques used to manage portfolios. You will review the implications of behavioural finance for investment management and draw initial conclusions on investor preferences. You will also review existing approaches like Modern Portfolio Theory and the Black Litterman approach and analyse why they have failed to deliver appropriate performance.

This module provides you with a broad perspective of credit risk. You will study how to assess credit risk associated with individual exposures, and discuss major literature in the field and some related applications. The module also covers aspects of univariate or single-exposure risk and investigates the pricing of defaultable bonds and single named credit derivatives.

This course provides an introduction to the main issues involved in insurance markets. Issues covered include the drivers of demand and supply for general insurance and life insurance, the limits of insurability and how scoring and auditing can help insurers to fight claims fraud.

This elective offers an introduction to analytical techniques and quantitative methods relevant for algorithmic trading. Topics will include the basics of automated execution, pairs trading and long-short equity trading strategies. The module is taught in two parts with the first part delivered online and the second part is an international study trip. Traditional lectures will be complemented by guest speakers, company visits and experiential learning activities. The class of 2016-17  traveled to New York for an intensive study experience.

There will be an additional cost for taking this elective, which is reviewed on an annual basis.

This module allows you to experience finance in a different economy. The module is taught in two parts with the first part delivered online and the second part is an international study trip. Traditional lectures will be complemented by guest speakers, company visits and experiential learning activities. The class of 2017-18 travelled to Dubai for an intensive study experience in the capital of an emerging economy.

There will be an additional cost for taking this elective, which is reviewed on an annual basis.

This module will introduce students to big data analysis using machine learning techniques. Students will utilise machine learning methods to use computational textual analysis and empirical modelling to quantify trends and sentiment in big data.

This elective allows you to apply key principles of private equity and venture capital to the financing of leveraged buyouts and early-stage ventures. The elective teaches students how to apply what they have learned in class to real life work situations by inviting inspiring speakers to present on campus throughout the module. The guest speakers come from various areas in the industry and discuss how they make transactions in real-life and what their roles entail on a daily basis.

I have acquired a strong basis of Private Equity & Venture Capital and a comprehensive view on the topic. I learned that it’s not always a matter of technical skills in this field but that the human element is very important.

Maria Vittoria MoschiniMSc Finance & Accounting 2017-18Hear more from Maria Vittoria Moschini

This new module is an introduction to real estate investment analysis from the perspective of an investor. It emphasises both the teaching of the theory of real estate investment and real estate markets as well as teaching the practical methods and their implementation as used in a modern professional investment context.

This module provides an in-depth analysis of credit and equity derivative products. We focus on corporate derivatives and cover the most important products, which serve as building blocks for structuring customised and sophisticated products.

This elective offers a series of topics on fintech innovation including block chain and its applications, digital payments and financial inclusion, and technology and infrastructure solutions.

Electives available and course outlines are subject to change. Imperial College Business School reserves the right to alter courses whenever they need to be amended or improved. Faculty may also change as and when required.