Gain business analytics skills and understand how to apply them to real-world situations

The goal of the course is to introduce students to three different areas in analytics, with a focus on prescriptive analytics. This course will focus on a brief introduction to probability/statistics, decision trees and optimisation and networks with applications in logistics and organisations.

By the end of the course you will:

• Understand some basic probability concepts such as distributions, conditional probability etc. and apply them in real life situations.

• Build and solve decision trees for modelling strategic real-world problems under uncertainty.

• Understand how to formulate various kinds of optimization problems and solve them in Excel and AMPL.

• Construct linear regression models for statistical analysis, and estimate them in R.

Course content

Week one

We will review some basic probability (distributions, conditional probability, Bayes Theorem, Central Limit Theorem, etc.). We’ll also learn how to formulate real-world strategic problems under uncertainty as decision trees and how to solve these trees using an Excel Addin. Finally, if time permits we’ll discuss some problems from statistics and some fun puzzles/biases from probability and statistics that often appear in the real world.

Week two

We will learn how to formulate managerial decision problems as linear and discrete optimization problems, what the properties of these optimization problems are, and how these optimization problems can be solved in Excel and AMPL. The methodology will be accompanied with various applications in supply chain management, revenue management and finance.

Week three

We will learn about the specification and estimation of the linear regression model, from model assumptions, coefficient estimation to model inference and predictions. Using empirical applications drawn from economics and related fields, we will demonstrate how these approaches can be successfully applied in practice.

Teaching methods

Students can choose to study the course fully online or through our multi-mode delivery format.

The multi-mode delivery method enables students to learn safely via a mixture of on-campus and remote online teaching. This new way of teaching takes into account the government COVID-19 regulations around social distancing and reduced capacity in lecture theatres, and most importantly, prioritises the safety of our students, faculty and staff.

Lecture content and class material will be made available through an interactive online teaching and learning hub – The Summer School Hub.

Workshops will use case studies, structured discussions and in-class exercises to demonstrate the application of concepts as you learn. You will also be expected to complete significant private study, exam preparation and group assignment work outside of your scheduled classes.

Entry requirements: Applicants for this business analytics short course will be expected to have some prior exposure or previous learning in calculus, linear algebra and probability.

For more details view our entry requirements.

Assessment

• Assignment (25% of final mark)

• Assignment on linear and integer programming (25% of final mark)

• Final examination (100% MCQ) - (50% of final mark)

Imperial College London will issue an official transcript with a final overall numerical mark – a breakdown of results will not be provided.

Imperial College London reserves the right to change or alter the courses offered without notice.

Key information

Duration: 3 weeks

Session dates: 28 June - 16 July 2021