Publications from our Researchers

Several of our current PhD candidates and fellow researchers at the Data Science Institute have published, or in the proccess of publishing, papers to present their research.  

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Medina-Mardones AM, Rosas FE, Rodríguez SE, Cofré Ret al., 2021,

    Hyperharmonic analysis for the study of high-order information-theoretic signals

    , Journal of Physics: Complexity, Vol: 2, Pages: 1-16, ISSN: 2632-072X

    Network representations often cannot fully account for the structural richness of complex systems spanning multiple levels of organisation. Recently proposed high-order information-theoretic signals are well-suited to capture synergistic phenomena that transcend pairwise interactions; however, the exponential-growth of their cardinality severely hinders their applicability. In this work, we combine methods from harmonic analysis and combinatorial topology to construct efficient representations of high-order information-theoretic signals. The core of our method is the diagonalisation of a discrete version of the Laplace–de Rham operator, that geometrically encodes structural properties of the system. We capitalise on these ideas by developing a complete workflow for the construction of hyperharmonic representations of high-order signals, which is applicable to a wide range of scenarios.

  • Journal article
    Huitzil I, Molina-Solana M, Gómez-Romero J, Bobillo Fet al., 2021,

    Minimalistic fuzzy ontology reasoning: An application to Building Information Modeling

    , Applied Soft Computing, Vol: 103, Pages: 1-15, ISSN: 1568-4946

    This paper presents a minimalistic reasoning algorithm to solve imprecise instance retrieval in fuzzy ontologies with application to querying Building Information Models (BIMs)—a knowledge representation formalism used in the construction industry. Our proposal is based on a novel lossless reduction of fuzzy to crisp reasoning tasks, which can be processed by any Description Logics reasoner. We implemented the minimalistic reasoning algorithm and performed an empirical evaluation of its performance in several tasks: interoperation with classical reasoners (Hermit and TrOWL), initialization time (comparing TrOWL and a SPARQL engine), and use of different data structures (hash tables, databases, and programming interfaces). We show that our software can efficiently solve very expressive queries not available nowadays in regular or semantic BIMs tools.

  • Journal article
    Tajnafoi G, Arcucci R, Mottet L, Vouriot C, Molina-Solana M, Pain C, Guo Y-Ket al., 2021,

    Variational Gaussian process for optimal sensor placement

    , Applications of Mathematics, Vol: 66, Pages: 287-317, ISSN: 0373-6725

    Sensor placement is an optimisation problem that has recently gained great relevance. In order to achieve accurate online updates of a predictive model, sensors are used to provide observations. When sensor location is optimally selected, the predictive model can greatly reduce its internal errors. A greedy-selection algorithm is used for locating these optimal spatial locations from a numerical embedded space. A novel architecture for solving this big data problem is proposed, relying on a variational Gaussian process. The generalisation of the model is further improved via the preconditioning of its inputs: Masked Autoregressive Flows are implemented to learn nonlinear, invertible transformations of the conditionally modelled spatial features. Finally, a global optimisation strategy extending the Mutual Information-based optimisation and fine-tuning of the selected optimal location is proposed. The methodology is parallelised to speed up the computational time, making these tools very fast despite the high complexity associated with both spatial modelling and placement tasks. The model is applied to a real three-dimensional test case considering a room within the Clarence Centre building located in Elephant and Castle, London, UK.

  • Journal article
    Kettner HS, Rosas F, Timmermann C, Kärtner L, Carhart-Harris RL, Roseman Let al., 2021,

    Psychedelic Communitas: intersubjective experience during psychedelic group sessions predicts enduring changes in psychological wellbeing and social connectedness

    , Frontiers in Pharmacology, Vol: 12, ISSN: 1663-9812

    Background: Recent years have seen a resurgence of research on the potential of psychedelic substances to treat addictive and mood disorders. Historically and contemporarily, psychedelic studies have emphasized the importance of contextual elements ('set and setting') in modulating acute drug effects, and ultimately, influencing long-term outcomes. Nevertheless, current small-scale clinical and laboratory studies have tended to bypass a ubiquitous contextual feature of naturalistic psychedelic use: its social dimension. This study introduces and psychometrically validates an adapted Communitas Scale, assessing acute relational experiences of perceived togetherness and shared humanity, in order to investigate psychosocial mechanisms pertinent to psychedelic ceremonies and retreats.Methods: In this observational, web-based survey study, participants (N = 886) were measured across five successive time-points: 2 weeks before, hours before, and the day after a psychedelic ceremony; as well as the day after, and 4 weeks after leaving the ceremony location. Demographics, psychological traits and state variables were assessed pre-ceremony, in addition to changes in psychological wellbeing and social connectedness from before to after the retreat, as primary outcomes. Using correlational and multiple regression (path) analyses, predictive relationships between psychosocial 'set and setting' variables, communitas, and long-term outcomes were explored.Results: The adapted Communitas Scale demonstrated substantial internal consistency (Cronbach's alpha = 0.92) and construct validity in comparison with validated measures of intra-subjective (visual, mystical, challenging experiences questionnaires) and inter-subjective (perceived emotional synchrony, identity fusion) experiences. Furthermore, communitas during ceremony was significantly correlated with increases in psychological wellbeing (r = 0.22), social connectedness (r = 0.25), and other salient mental health outcomes. Path

  • Journal article
    Szigeti B, Kartner L, Blemings A, Rosas F, Feilding A, Nutt DJ, Carhart-Harris RL, Erritzoe Det al., 2021,

    Self-blinding citizen science to explore psychedelic microdosing

    , eLife, Vol: 10, Pages: 1-26, ISSN: 2050-084X

    Microdosing is the practice of regularly using low doses of psychedelic drugs. Anecdotal reports suggest that microdosing enhances well-being and cognition; however, such accounts are potentially biased by the placebo effect. This study used a ‘self-blinding’ citizen science initiative, where participants were given online instructions on how to incorporate placebo control into their microdosing routine without clinical supervision. The study was completed by 191 participants, making it the largest placebo-controlled trial on psychedelics to-date. All psychological outcomes improved significantly from baseline to after the 4 weeks long dose period for the microdose group; however, the placebo group also improved and no significant between-groups differences were observed. Acute (emotional state, drug intensity, mood, energy, and creativity) and post-acute (anxiety) scales showed small, but significant microdose vs. placebo differences; however, these results can be explained by participants breaking blind. The findings suggest that anecdotal benefits of microdosing can be explained by the placebo effect.

  • Journal article
    Turkheimer FE, Rosas FE, Dipasquale O, Martins D, Fagerholm ED, Expert P, Vasa F, Lord L-D, Leech Ret al., 2021,

    A complex systems perspective on neuroimaging studies of behavior and its disorders

    , The Neuroscientist: reviews at the interface of basic and clinical neurosciences, Pages: 1-18, ISSN: 1073-8584

    The study of complex systems deals with emergent behavior that arises as a result of nonlinear spatiotemporal interactions between a large number of components both within the system, as well as between the system and its environment. There is a strong case to be made that neural systems as well as their emergent behavior and disorders can be studied within the framework of complexity science. In particular, the field of neuroimaging has begun to apply both theoretical and experimental procedures originating in complexity science—usually in parallel with traditional methodologies. Here, we illustrate the basic properties that characterize complex systems and evaluate how they relate to what we have learned about brain structure and function from neuroimaging experiments. We then argue in favor of adopting a complex systems-based methodology in the study of neuroimaging, alongside appropriate experimental paradigms, and with minimal influences from noncomplex system approaches. Our exposition includes a review of the fundamental mathematical concepts, combined with practical examples and a compilation of results from the literature.

  • Journal article
    Balaban G, Halliday B, Bradley P, Bai W, Nygaard S, Owen R, Hatipoglu S, Ferreira ND, Izgi C, Tayal U, Corden B, Ware J, Pennell D, Rueckert D, Plank G, Rinaldi CA, Prasad SK, Bishop Met al., 2021,

    Late-gadolinium enhancement interface area and electrophysiological simulations predict arrhythmic events in non-ischemic dilated cardiomyopathy patients

    , JACC: Clinical Electrophysiology, Vol: 7, Pages: 238-249, ISSN: 2405-5018

    BACKGROUND: The presence of late-gadolinium enhancement (LGE) predicts life threatening ventricular arrhythmias in non-ischemic dilated cardiomyopathy (NIDCM); however, risk stratification remains imprecise. LGE shape and simulations of electrical activity may be able to provide additional prognostic information.OBJECTIVE: This study sought to investigate whether shape-based LGE metrics and simulations of reentrant electrical activity are associated with arrhythmic events in NIDCM patients.METHODS: CMR-LGE shape metrics were computed for a cohort of 156 NIDCM patients with visible LGE and tested retrospectively for an association with an arrhythmic composite end-point of sudden cardiac death and ventricular tachycardia. Computational models were created from images and used in conjunction with simulated stimulation protocols to assess the potential for reentry induction in each patient’s scar morphology. A mechanistic analysis of the simulations was carried out to explain the associations. RESULTS: During a median follow-up of 1611 [IQR 881-2341] days, 16 patients (10.3%) met the primary endpoint. In an inverse probability weighted Cox regression, the LGE-myocardial interface area (HR:1.75; 95% CI:1.24-2.47; p=0.001), number of simulated reentries (HR: 1.4; 95% CI: 1.23-1.59; p<0.01) and LGE volume (HR:1.44; 95% CI:1.07-1.94; p=0.02) were associated with arrhythmic events. Computational modeling revealed repolarisation heterogeneity and rate-dependent block of electrical wavefronts at the LGE-myocardial interface as putative arrhythmogenic mechanisms directly related to LGE interface area.CONCLUSION: The area of interface between scar and surviving myocardium, as well as simulated reentrant activity, are associated with an elevated risk of major arrhythmic events in NIDCM patients with LGE and represent novel risk predictors.

  • Journal article
    Xiong Z, Xia Q, Hu Z, Huang N, Bian C, Zheng Y, Vesal S, Ravikumar N, Maier A, Yang X, Heng P-A, Ni D, Li C, Tong Q, Si W, Puybareau E, Khoudli Y, Geraud T, Chen C, Bai W, Rueckert D, Xu L, Zhuang X, Luo X, Jia S, Sermesant M, Liu Y, Wang K, Borra D, Masci A, Corsi C, de Vente C, Veta M, Karim R, Preetha CJ, Engelhardt S, Qiao M, Wang Y, Tao Q, Nunez-Garcia M, Camara O, Savioli N, Lamata P, Zhao Jet al., 2021,

    A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging

    , Medical Image Analysis, Vol: 67, Pages: 1-14, ISSN: 1361-8415

    Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalitie

  • Journal article
    Andersen MM, Schjoedt U, Price H, Rosas FE, Scrivner C, Clasen Met al., 2020,

    Playing with fear: a field study in recreational horror

    , Psychological Science, Vol: 31, Pages: 1497-1510, ISSN: 0956-7976

    Haunted attractions are illustrative examples of recreational fear in which people voluntarily seek out frightening experiences in pursuit of enjoyment. We present findings from a field study at a haunted-house attraction where visitors between the ages of 12 and 57 years (N = 110) were equipped with heart rate monitors, video-recorded at peak scare points during the attraction, and asked to report on their experience. Our results show that enjoyment has an inverted-U-shaped relationship with fear across repeated self-reported measures. Moreover, results from physiological data demonstrate that the experience of being frightened is a linear function of large-scale heart rate fluctuations, whereas there is an inverted-U-shaped relationship between participant enjoyment and small-scale heart rate fluctuations. These results suggest that enjoyment is related to forms of arousal dynamics that are “just right.” These findings shed light on how fear and enjoyment can coexist in recreational horror.

  • Journal article
    Rosas FE, Mediano PAM, Jensen HJ, Seth AK, Barrett AB, Carhart-Harris RL, Bor Det al., 2020,

    Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data

    , PLOS COMPUTATIONAL BIOLOGY, Vol: 16, ISSN: 1553-734X
  • Journal article
    Rosas FE, Mediano PAM, Rassouli B, Barrett ABet al., 2020,

    An operational information decomposition via synergistic disclosure

    , Journal of Physics A: Mathematical and Theoretical, Vol: 53, Pages: 485001-485001, ISSN: 1751-8113

    Multivariate information decompositions hold promise to yield insight into complex systems, and stand out for their ability to identify synergistic phenomena. However, the adoption of these approaches has been hindered by there being multiple possible decompositions, and no precise guidance for preferring one over the others. At the heart of this disagreement lies the absence of a clear operational interpretation of what synergistic information is. Here we fill this gap by proposing a new information decomposition based on a novel operationalisation of informational synergy, which leverages recent developments in the literature of data privacy. Our decomposition is defined for any number of information sources, and its atoms can be calculated using elementary optimisation techniques. The decomposition provides a natural coarse-graining that scales gracefully with the system's size, and is applicable in a wide range of scenarios of practical interest.

  • Journal article
    Herzog R, Mediano PAM, Rosas FE, Carhart-Harris R, Perl YS, Tagliazucchi E, Cofre Ret al., 2020,

    A mechanistic model of the neural entropy increase elicited by psychedelic drugs

    , Scientific Reports, Vol: 10, ISSN: 2045-2322

    Psychedelic drugs, including lysergic acid diethylamide and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in some regions and decreased in others, suggesting a topographical reconfiguration mediated by 5HT2A-R activation. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain's anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.

  • Journal article
    Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O'Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert Det al., 2020,

    A population-based phenome-wide association study of cardiac and aortic structure and function

    , Nature Medicine, Vol: 26, Pages: 1654-1662, ISSN: 1078-8956

    Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart–brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.

  • Journal article
    Moriconi R, Deisenroth M, Karri S, 2020,

    High-dimensional Bayesian optimization usinglow-dimensional feature spaces

    , Machine Learning, Vol: 109, Pages: 1925-1943, ISSN: 0885-6125

    Bayesian optimization (BO) is a powerful approach for seeking the global optimum of expensive black-box functions and has proven successful for fine tuning hyper-parameters of machine learning models. However, BO is practically limited to optimizing 10–20 parameters. To scale BO to high dimensions, we usually make structural assumptions on the decomposition of the objective and/or exploit the intrinsic lower dimensionality of the problem, e.g. by using linear projections. We could achieve a higher compression rate with nonlinear projections, but learning these nonlinear embeddings typically requires much data. This contradicts the BO objective of a relatively small evaluation budget. To address this challenge, we propose to learn a low-dimensional feature space jointly with (a) the response surface and (b) a reconstruction mapping. Our approach allows for optimization of BO’s acquisition function in the lower-dimensional subspace, which significantly simplifies the optimization problem. We reconstruct the original parameter space from the lower-dimensional subspace for evaluating the black-box function. For meaningful exploration, we solve a constrained optimization problem.

  • Conference paper
    Rosas De Andraca FE, Mediano P, Biehl M, Chandaria S, Polani Det al., 2020,

    Causal Blankets: Theory and Algorithmic Framework

    , ECML/PKDD 2020

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=607&limit=15&page=2&respub-action=search.html Current Millis: 1653509949341 Current Time: Wed May 25 21:19:09 BST 2022