Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Valerio L, North A, Collins CM, Mumford JD, Facchinelli L, Spaccapelo R, Benedict MQet al., 2016,

    Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations.

    , Insects, Vol: 7, ISSN: 2075-4450

    The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks.

  • Journal article
    Rezaei F, Safavi HR, Mirchi A, Madani Ket al., 2016,

    f-MOPSO: an alternative multi-objective PSO algorithm for conjunctive water use management

    , Journal of Hydro-Environment Research, Vol: 14, Pages: 1-18, ISSN: 1876-4444

    In recent years, evolutionary techniques have been widely used to search for the global optimum of combinatorial non-linear non-convex problems. In this paper, we present a new algorithm, named fuzzy Multi-Objective Particle Swarm Optimization (f-MOPSO) to improve conjunctive surface water and groundwater management. The f-MOPSO algorithm is simple in concept, easy to implement, and computationally efficient. It is based on the role of weighting method to define partial performance of each point (solution) in the objective space. The proposed algorithm employs a fuzzy inference system to consider all the partial performances for each point when optimizing the objective function values. The f-MOPSO algorithm was compared with two other well-known MOPSOs through a case study of conjunctive use of surface and groundwater in Najafabad Plain in Iran considering two management models, including a typical 12-month operation period and a 10-year planning horizon. Overall, the f-MOPSO outperformed the other MOPSO algorithms with reference to performance criteria and Pareto-front analysis while nearly fully satisfying water demands with least monthly and cumulative groundwater level (GWL) variation. The proposed algorithm is capable of finding the unique optimal solution on the Pareto-front to facilitate decisions to address large-scale optimization problems.

  • Journal article
    Mellor AV, Hylton N, Maier S, Ekins-Daukes Net al., 2016,

    Interstitial light-trapping design for multi-junction solar cells

    , Solar Energy Materials and Solar Cells, Vol: 159, Pages: 212-218, ISSN: 0927-0248

    We present a light-trapping design capable of significantly enhancing the photon absorption inany subcell of a multi-junction solar cell. The design works by coupling incident light intowaveguide modes in one of the subcells via a diffraction grating, and preventing these modesfrom leaking into lower subcells via a low-index layer and a distributed Bragg reflector, whichtogether form an omnidirectional mirror. This allows the thickness of the target subcell to bereduced without compromising photon absorption, which improves carrier collection, andtherefore photocurrent. The paper focuses on using the composite structure to improve theradiation hardness of a InGaP/Ga(In)As/Ge space solar cell. In this context, it is shown viasimulation that the Ga(In)As middle-cell thickness can be reduced from 3500 to 700 nm,whilst maintaining strong photon absorption, and that this leads to a significantly improvedend-of-life photocurrent in the Ga(In)As middle cell. However, the design can in general beapplied to a wide range of multi-junction solar cell types. We discuss the principles ofoperation of the design, as well as possible methods of its fabrication and integration intomulti-junction solar cells.

  • Journal article
    Parfitt R, Russell JE, Bantges RJ, Clerbaux N, Brindley HEet al., 2016,

    A study of the time evolution of GERB shortwave calibration by comparison with CERES Edition-3A data

    , Remote Sensing of Environment, Vol: 186, Pages: 416-427, ISSN: 0034-4257

    This study examines the evolution of the GERB-2 and GERB-1 Edition 1 shortwave radiance calibration between 2004-2007 and 2007-2012 respectively, through comparison with CERES instrument FM1 Edition 3A SSF instantaneous radiances. Two periods when simultaneous observations from both GERB-2 and GERB-1 were available, January 13th to February 11th 2007 and May 1st to May 10th 2007, are also compared. For these two overlap periods respectively, averaged over all CERES ‘unfiltered-to-filtered radiance ratio’ subsets, the GERB-1/CERES unfiltered radiance ratio is on average found to be 1.6% and 1.9% lower than the associated GERB-2/CERES unfiltered radiance ratio. Over the two longer time series the GERB/CERES unfiltered radiance ratio shows a general decrease with time for both GERB-2 and GERB-1. The rate of decrease varies through time but no significant seasonal dependence is seen. Averaged over all subsets the GERB-2/CERES unfiltered radiance ratio showed a decrease of 1.9% between June 2004 and June 2006. Between June 2007 and June 2012, the corresponding decrease in the GERB-1/CERES unfiltered radiance ratio was 6.5%. The evolution of the GERB/CERES unfiltered radiance ratio for both GERB-2 and GERB-1 shows a strong dependence on the CERES unfiltered-to-filtered radiance ratio, indicating that it is spectrally dependent. Further time-series analysis and theoretical work using simulated spectral radiance curves suggests that for GERB-1 the evolution is consistent with a darkening in the GERB shortwave spectral response function which is most pronounced at the shortest wavelengths. For GERB-2, no single spectral cause can be identified, suggesting that the evolution is likely due to a combination of several different effects.

  • Journal article
    Merla Y, Wu B, Yufit V, Brandon NP, Martinez-Botas R, Offer Get al., 2016,

    Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    , Journal of Power Sources, Vol: 331, Pages: 224-231, ISSN: 1873-2755

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehiclesand grid scale electricity storage demand long lifetime and high performance which typicallymakes them the limiting factor in a system. Understanding the state-of-health during operationis important in order to optimise for long term durability and performance. However, thisrequires accurate in-operando diagnostic techniques that are cost effective and practical. Wepresent a novel diagnosis method based upon differential thermal voltammetry demonstratedon a battery pack made from commercial lithium-ion cells where one cell was deliberately agedprior to experiment. The cells were in parallel whilst being thermally managed with forced airconvection. We show for the first time, a diagnosis method capable of quantitativelydetermining the state-of-health of four cells simultaneously by only using temperature and 2voltage readings for both charge and discharge. Measurements are achieved using low-costthermocouples and a single voltage measurement at a frequency of 1Hz, demonstrating thefeasibility of implementing this approach on real world battery management systems. Thetechnique could be particularly useful under charge when constant current or constant power iscommon, this therefore should be of significant interest to all lithium-ion battery users.

  • Journal article
    Zhang JJ, Lee KB, He L, Seiffert J, Subramaniam P, Yang L, Chen S, Maguire P, Mainelis G, Schwander S, Tetley T, Porter A, Ryan M, Shaffer M, Hu S, Gong J, Chung KFet al., 2016,

    Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles.

    , Environmental Science: Processes & Impacts, Vol: 18, Pages: 1333-1342, ISSN: 2050-7887

    Nanoceria (i.e., CeO2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox™ concentrations in the fuel (0×, 0.1×, 1×, and 10× of manufacturer recommended 0.5 mL Envirox™ per liter fuel), DEP sizes decreased from 194.6 ± 20.1 to 116.3 ± 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0×, 0.1×, and 1× fuels, DEPs from the 10× fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP to

  • Journal article
    Grainger S, Mao F, Buytaert W, 2016,

    Environmental data visualisation for non-scientific contexts: Literature review and design framework

    , Environmental Modelling & Software, Vol: 85, Pages: 299-318, ISSN: 1364-8152

    Environmental science is an applied discipline, which therefore requires interacting with actors outside of the scientific community. Visualisations are increasingly seen as powerful tools to engage users with unfamiliar and complex subject matter. Despite recent research advances, scientists are yet to fully harness the potential of visualisation when interacting with non-scientists. To address this issue, we review the main principles of visualisation, discuss specific graphical challenges for environmental science and highlight some best practice from non-professional contexts. We provide a design framework to enhance the communication and application of scientific information within professional contexts. These guidelines can help scientists incorporate effective visualisations within improved dissemination and knowledge exchange platforms. We conclude that the uptake of science within environmental decision-making requires a highly iterative and collaborative design approach towards the development of tailored visualisations. This enables users to not only generate actionable understanding but also explore information on their own terms.

  • Book chapter
    Murray KA, Loh E, Nava A, Aguirre A, Daszak Pet al., 2016,


    , Tropical Conservation: Perspectives on Local and Global Priorities, Editors: Aguirre, Sukumar
  • Journal article
    Kroupa M, Offer GJ, Kosek J, 2016,

    Modelling of Supercapacitors: Factors Influencing Performance

    , Journal of the Electrochemical Society, Vol: 163, Pages: A2475-A2487, ISSN: 0013-4651

    The utilizable capacitance of Electrochemical Double Layer Capacitors (EDLCs) is a function of the frequency at which they are operated and this is strongly dependent on the construction and physical parameters of the device. We simulate the dynamic behavior of an EDLC using a spatially resolved model based on the porous electrode theory. The model of Verbrugge and Liu (J. Electrochem. Soc. 152, D79 (2005)) was extended with a dimension describing the transport into the carbon particle pores. Our results show a large influence of the electrode thickness (Le), separator thickness (Ls) and electrolyte conductivity (κ) on the performance of EDLCs. In agreement with experimental data, the time constant was an increasing function of Le and Ls and a decreasing function of κ. The main limitation was found to be on the scale of the whole cell, while transport into the particles became a limiting factor only if the particle size was unrealistically large. The results were generalized into a simplified relation allowing for a quick evaluation of performance for the design of new devices. This work provides an insight into the performance limitation of EDLCs and identifies the critical parameters to consider for both systems engineers and material scientists.

  • Journal article
    Clough PT, Boot-Handford ME, Zhao M, Fennell PSet al., 2016,

    Degradation study of a novel polymorphic sorbent under realistic post-combustion conditions

    , Fuel, Vol: 186, Pages: 708-713, ISSN: 0016-2361

    Calcium looping is a Carbon Capture and Storage (CCS) technology which has the potential to be applied to both power generation plants and some industrial emission sources. The main problem with the use of calcium oxide-based sorbents is their characteristic decay in carrying capacity. This is caused by sintering and is made worse during multiple cycles of CO2 absorption (carbonation) and release (calcination). This paper provides an investigation into the degradation of a novel type of sorbent that is able to regenerate porosity during the temperature cycling of calcium looping. The porosity regeneration of this sorbent is a result of a dicalcium silicate additive undergoing a reliable phase change (α′ ↔ β), which consequently has a useful volume change associated with it. The sorbent here, has been tested for the first time under reasonably realistic conditions within a TGA for multiple cycles. The results demonstrated that the sorbent displays the characteristic decline in carrying capacity when calcined in the presence of CO2, but not when calcined in the absence of CO2 in the fluidising gas. This paper also presents an improved method to conduct TGA carrying capacity measurements of CO2 sorbents which minimises the over carbonation between cycles.

  • Journal article
    Hardin E, AghaKouchak A, Qomi MJA, Madani K, Tarroja B, Zhou Y, Yang T, Samuelsen Set al., 2016,

    California drought increases CO2 footprint of energy

    , SUSTAINABLE CITIES AND SOCIETY, Vol: 28, Pages: 450-452, ISSN: 2210-6707
  • Journal article
    Porter RTJ, Mahgerefteh H, Brown S, Martynov S, Collard A, Woolley RM, Fairweather M, Falle SAEG, Wareing CJ, Nikolaidis IK, Boulougouris GC, Peristeras LD, Tsangaris DM, Economou IG, Salvador C, Zanganeh K, Wigston A, Najafali JN, Shafeen A, Beigzadeh A, Farret R, Gombert P, Hebrard J, Proust C, Ceroni A, Flauw Y, Zhang Y, Chen S, Yu J, Talemi RH, Bensabat J, Wolf JL, Rebscher D, Niemi A, Jung B, Mac Dowell N, Shah N, Kolster C, Mechleri E, Krevor Set al., 2016,

    Techno-economic assessment of CO2 quality effect on its storage and transport: CO(2)QUEST An overview of aims, objectives and main findings

    , International Journal of Greenhouse Gas Control, Vol: 54, Pages: 662-681, ISSN: 1750-5836

    This paper provides an overview of the aims, objectives and the main findings of the CO2QUEST FP7 collaborative project, funded by the European Commission and designed to address the fundamentally important and urgent issues regarding the impact of the typical impurities in CO2 streams captured from fossil fuel power plants and other CO2 intensive industries on their safe and economic pipeline transportation and storage. The main features and results recorded from some of the unique test facilities constructed as part of the project are presented. These include an extensively instrumented realistic-scale test pipeline for conducting pipeline rupture and dispersion tests in China, an injection test facility in France to study the mobility of trace metallic elements contained in a CO2 stream following injection near a shallow-water qualifier and fluid/rock interactions and well integrity experiments conducted using a fully instrumented deep-well CO2/impurities injection test facility in Israel. The above, along with the various unique mathematical models developed, provide the fundamentally important tools needed to define impurity tolerance levels, mixing protocols and control measures for pipeline networks and storage infrastructure, thus contributing to the development of relevant standards for the safe design and economic operation of CCS.

  • Journal article
    Chen C, Kamenkovich I, Berloff P, 2016,

    Eddy trains and striations in quasigeostrophic simulations and the ocean

    , Journal of Physical Oceanography, Vol: 46, Pages: 2807-2825, ISSN: 1520-0485

    This study explores the relationship between coherent eddies and zonally elongated striations. The investigation involves an analysis of two baroclinic quasigeostrophic models of a zonal and double-gyre flow and a set of altimetry sea level anomaly data in the North Pacific. Striations are defined by either spatiotemporal filtering or empirical orthogonal functions (EOFs), with both approaches leading to consistent results. Coherent eddies, identified here by the modified Okubo–Weiss parameter, tend to propagate along well-defined paths, thus forming “eddy trains” that coincide with striations. The striations and eddy trains tend to drift away from the intergyre boundary at the same speed in both the model and observations. The EOF analysis further confirms that these striations in model simulations and altimetry are not an artifact of temporal averaging of random, spatially uncorrelated vortices. This study suggests instead that eddies organize into eddy trains, which manifest themselves as striations in low-pass filtered data and EOF modes.

  • Journal article
    Cheng C, Yan L, Mirchi A, Madani Ket al., 2016,

    China's Booming Hydropower: Systems Modeling Challenges and Opportunities

  • Journal article
    Msowoya K, Madani K, Davtalab R, Mirchi A, Lund JRet al., 2016,

    Climate change impacts on maize production in the warm heart of Africa

    , Water Resources Management, Vol: 30, Pages: 5299-5312, ISSN: 1573-1650

    Agriculture is the mainstay of economy in Malawi - the warm heart ofAfrica. It employs 85 % of the labour force, and produces one third of the Gross Domestic Product (GDP) and 90 % of foreign exchange earnings. Maize farming covers over 92 % of Malawi’s agricultural land and contributes over 54 % of national caloric intake. With a subtropical climate and ~99 % rainfed agriculture, Malawi reliesheavily on precipitation for its agricultural production. Given the significance of rainfed maize for the nation’s labour force and GDP, we have investigated climatechange effects on this staple crop. We show that rainfed maize production in the Lilongwe District, the largest maize growing district in Malawi, may decrease up to 14 % by mid-century due to climate change, rising to as much as 33 % loss by the century’s end. These declines can substantially harm Malawi’s food production and socioeconomic status. Supplemental irrigation, crop diversification and natural conservation methods are promising adaptation strategies to improve Malawi’s food security and socioeconomic stability.

  • Journal article
    Pfenninger S, Staffell IL, 2016,

    Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data

    , Energy, Vol: 114, Pages: 1251-1265, ISSN: 0360-5442

    Solar PV is rapidly growing globally, creating difficult questions around how to efficiently integrate it into national electricity grids. Its time-varying power output is difficult to model credibly because it depends on complex and variable weather systems, leading to difficulty in understanding its potential and limitations. We demonstrate how the MERRA and MERRA-2 global meteorological reanalyses as well as the Meteosat-based CM-SAF SARAH satellite dataset can be used to produce hourly PV simulations across Europe. To validate these simulations, we gather metered time series from more than 1000 PV systems as well as national aggregate output reported by transmission network operators. We find slightly better accuracy from satellite data, but greater stability from reanalysis data. We correct for systematic bias by matching our simulations to the mean bias in modeling individual sites, then examine the long-term patterns, variability and correlation with power demand across Europe, using thirty years of simulated outputs. The results quantify how the increasing deployment of PV substantially changes net power demand and affects system adequacy and ramping requirements, with heterogeneous impacts across different European countries. The simulation code and the hourly simulations for all European countries are available freely via an interactive web platform,

  • Journal article
    Ochoa-Tocachi B, Buytaert W, De Bièvre B, 2016,

    Regionalization of land-use impacts on streamflow using a network of paired catchments

    , Water Resources Research, Vol: 52, Pages: 6710-6729, ISSN: 1944-7973

    Quantifying the impact of land use and cover (LUC) change on catchment hydrological response is essential for land-use planning and management. Yet hydrologists are often not able to present consistent and reliable evidence to support such decision-making. The issue tends to be twofold: a scarcity of relevant observations, and the difficulty of regionalizing any existing observations. This study explores the potential of a paired catchment monitoring network to provide statistically robust, regionalized predictions of LUC change impact in an environment of high hydrological variability. We test the importance of LUC variables to explain hydrological responses and to improve regionalized predictions using 24 catchments distributed along the Tropical Andes. For this, we calculate first 50 physical catchment properties, and then select a subset based on correlation analysis. The reduced set is subsequently used to regionalize a selection of hydrological indices using multiple linear regression. Contrary to earlier studies, we find that incorporating LUC variables in the regional model structures increases significantly regression performance and predictive capacity for 66% of the indices. For the runoff ratio, baseflow index, and slope of the flow duration curve, the mean absolute error reduces by 53% and the variance of the residuals by 79%, on average. We attribute the explanatory capacity of LUC in the regional model to the pairwise monitoring setup, which increases the contrast of the land-use signal in the data set. As such, it may be a useful strategy to optimize data collection to support watershed management practices and improve decision-making in data-scarce regions.

  • Journal article
    Biton M, Yufit V, Tariq F, Kishimoto M, Brandon NPet al., 2016,

    Enhanced Imaging of Lithium Ion Battery Electrode Materials

    , Journal of the Electrochemical Society, Vol: 164, Pages: A6032-A6038, ISSN: 0013-4651

    In this study we present a novel method of lithium ion battery electrode sample preparation with a new type of epoxy impregnation,brominated (Br) epoxy, which is introduced here for the first time for this purpose and found suitable for focused ion beam scanningelectron microscope (FIB-SEM) tomography. The Br epoxy improves image contrast, which enables higher FIB-SEM resolution (3Dimaging), which is amongst the highest ever reported for composite LFP cathodes using FIB-SEM. In turn it means that the particlesare well defined and the size distribution of each phase can be analyzed accurately from the complex 3D electrode microstructureusing advanced quantification algorithms.The authors present for the first time a new methodology of contrast enhancement for 3D imaging, including novel advancedquantification, on a commercial Lithium Iron Phosphate (LFP) LiFePO4 cathode. The aim of this work is to improve the quality ofthe 3D imaging of challenging battery materials by developing methods to increase contrast between otherwise previously poorlydifferentiated phases. This is necessary to enable capture of the real geometry of electrode microstructures, which allows measurementof a wide range of microstructural properties such as pore/particle size distributions, surface area, tortuosity and porosity. Theseproperties play vital roles in determining the performance of battery electrodes.

  • Journal article
    Staffell IL, Pfenninger S, 2016,

    Using Bias-Corrected Reanalysis to SimulateCurrent and Future Wind Power Output

    , Energy, Vol: 114, Pages: 1224-1239, ISSN: 0360-5442

    Reanalysis models are rapidly gaining popularity for simulating wind power output due to their convenience and global coverage. However, they should only be relied upon once thoroughly proven. This paper reports the first international validation of reanalysis for wind energy, testing NASA's MERRA and MERRA-2 in 23 European countries. Both reanalyses suffer significant spatial bias, overestimating wind output by 50% in northwest Europe and underestimating by 30% in the Mediterranean. We derive national correction factors, and show that after calibration national hourly output can be modelled with R2 above 0.95. Our underlying data are made freely available to aid future research.We then assess Europe's wind resources with twenty-year simulations of the current and potential future fleets. Europe's current average capacity factor is 24.2%, with countries ranging from 19.5% (Germany) to 32.4% (Britain). Capacity factors are rising due to improving technology and locations; for example, Britain's wind fleet is now 23% more productive than in 2005. Based on the current planning pipeline, we estimate Europe's average capacity factor could increase by nearly a third to 31.3%. Countries with large stakes in the North Sea will see significant gains, with Britain's average capacity factor rising to 39.4% and Germany's to 29.1%.

  • Journal article
    Shevchenko I, Berloff P, 2016,

    Eddy Backscatter and Counter-Rotating Gyre Anomalies of Midlatitude Ocean Dynamics

    , Fluids, Vol: 1, ISSN: 2311-5521

    This work concerns how two competing mechanisms – eddy backscatter and2 counter-rotating gyre anomalies – influence the midlatitude ocean dynamics, as described by3 the eddy-resolving quasi-geostrophic (QG) model of wind-driven gyres. We analysed dynamical4 balances and effects of different eddy forcing components, as well as their dependencies on5 increasing vertical resolution and decreasing eddy viscosity and found that the eastward jet6 and its adjacent recirculation zones are maintained mostly by the eddy forcing via the eddy7 backscatter mechanism, whereas the time-mean eddy-forcing component plays not only direct8 jet-supporting but also indirect jet-inhibiting role. The latter is achieved by inducing zonally9 elongated anticyclonic/cyclonic Counter-rotating Gyre Anomaly (CGA) in the subpolar/subtropical10 gyre. The indirect effect of CGAs on the eastward jet is found to be moderate relative to the dominant11 eddy backscatter mechanism. We also found that the higher is the vertical baroclinic mode, the12 weaker is its backscatter role and the stronger is its CGA-driving role. Although the barotropic and13 first baroclinic modes are the most efficient ones in maintaining the backscatter, the higher, up to the14 fifth baroclinic modes also have significant but reverse impact that reduces the backscatter

  • Journal article
    Bladon AJ, Short KM, Mohammed EY, Milner-Gulland EJet al., 2016,

    Payments for ecosystem services in developing world fisheries

    , FISH AND FISHERIES, Vol: 17, Pages: 839-859, ISSN: 1467-2960
  • Report
    Mechleri E, Staffell I, Lawal A, Ramos A, Shah N, Mac Dowell Net al., 2016,

    Evaluation of Process Control Strategies for Normal, Flexible and Upset Operation Conditions of CO2 Post Combustion Capture Processes

    , 2016/07

    This project focuses on performing an evaluation of process control strategies for normal and flexible operation conditions of CO2 post-combustion capture (PCC) processes. PCC is a promising, near-term technology for large-scale deployment for the decarbonisation of the power generation and other sectors. However, the integration of this technology imposes a well-known efficiency penalty on the power plant with which it is integrated. Once an optimal process design has been identified, this energy penalty can be somewhat reduced via application of an appropriate control strategy to the PCC plant. An appropriate process control strategy is also fundamental to guarantee the safety and feasibility of the process under flexible operating conditions that the power plants may be subject to.The aim of this project is to develop the process control strategy, to select appropriate control variables for a PCC process, and design efficient control structures for operation of a post-combustion capture process with minimum energy requirements for coal and natural gas power plants. The control structures are developed for power plant operating ranges of around 50% to 100% load.

  • Report
    Mechleri E, Rivotti P, Staffell I, Lawal A, Ramos A, Shah N, Mac Dowell Net al., 2016,

    Evaluation of Process Control Strategies for Normal, Flexible and Upset Operation Conditions of CO2 Post Combustion Capture Processes

    Mechleri E, Staffell I, Lawal A, Ramos A, Shah N, Mac Dowell Nclose, 2016, Evaluation of Process Control Strategies for Normal, Flexible and Upset Operation Conditions of CO2 Post Combustion Capture Processes, 2016/07

  • Journal article
    Ochoa-Tocachi B, Buytaert W, De Bièvre B, Célleri R, Crespo P, Villacís M, Llerena C, Acosta L, Villazón M, Guallpa M, Gil-Rios J, Fuentes P, Olaya R, Viñas P, Rojas G, Arias Set al., 2016,

    Impacts of land use on the hydrological response of tropical Andean catchments

    , Hydrological Processes, Vol: 30, Pages: 4074-4089, ISSN: 1099-1085

    Changes in land use and land cover are major drivers of hydrological alteration in the tropical Andes. However, quantifying their impacts is fraught with difficulties because of the extreme diversity in meteorological boundary conditions, which contrasts strongly with the lack of knowledge about local hydrological processes. Although local studies have reduced data scarcity in certain regions, the complexity of the tropical Andes poses a big challenge to regional hydrological prediction.This study analyses data generated from a participatory monitoring network of 25 headwater catchments covering three of the major Andean biomes (páramo, jalca, and puna), and link their hydrological responses to main types of human interventions (cultivation, afforestation and grazing). A paired catchment setup was implemented to evaluate the impacts of change using a “trading space-for-time” approach. Catchments were selected based on regional representativeness and contrasting land use types. Precipitation and discharge have been monitored and analysed at high temporal resolution for a time period between 1 and 5 years.The observed catchment responses clearly reflect the extraordinarily wide spectrum of hydrological processes of the tropical Andes. They range from perennially humid páramos in Ecuador and northern Peru with extremely large specific discharge and baseflows, to highly seasonal, flashy catchments in the drier punas of southern Peru and Bolivia. The impacts of land use are similarly diverse and their magnitudes are a function of catchment properties, original and replacement vegetation, and management type. Cultivation and afforestation consistently affect the entire range of discharges, particularly low flows. The impacts of grazing are more variable, but have the largest effect on the catchment hydrological regulation. Overall, anthropogenic interventions result in increased streamflow variability and significant reductions in catchmen

  • Journal article
    Staffell IL, Rustomji M, 2016,

    Maximising the value of electricity storage

    , Journal of Energy Storage, Vol: 8, Pages: 212-225, ISSN: 2352-152X

    Grid-scale energy storage promises to reduce the cost of decarbonising electricity, but is not yeteconomically viable. Either costs must fall, or revenue must be extracted from more of the servicesthat storage provides the electricity system. To help understand the economic prospects forstorage, we review the sources of revenue available and the barriers faced in accessing them. Wethen demonstrate a simple algorithm that maximises the profit from storage providing arbitragewith reserve under both perfect and no foresight, which avoids complex linear programmingtechniques. This is made open source and freely available to help promote further research.We demonstrate that battery systems in the UK could triple their profits by participating in thereserve market rather than just providing arbitrage. With no foresight of future prices, 75-95% ofthe optimal profits are gained. In addition, we model a battery combined with a 322 MW wind farmto evaluate the benefits of shifting time of delivery. The revenues currently available are notsufficient to justify the current investment costs for battery technologies, and so further revenuestreams and cost reductions are required.

  • Journal article
    Hills, Florin N, Fennell PS, 2016,

    Decarbonising the cement sector: a bottom-up model for optimising carbon capture application in the UK

    , Journal of Cleaner Production, Vol: 139, Pages: 1351-1361, ISSN: 0959-6526

    Industrial processes such as Portland cement manufacture produce a large proportion of anthropogenic carbon dioxide and significantly reducing their emissions could be difficult or expensive without carbon capture and storage. This paper explores the idea of synchronising shutdowns for carbon capture and storage installation with major shutdowns required to refurbish major process units at industrial sites. It develops a detailed bottom-up model for the first time and applies it to the United Kingdom’s cement industry. This research demonstrates that several policy and technology risks are not identified by the top-down models and it highlights the importance of reducing shut-down times for capture plant construction. Failure to do so could increase installation costs by around 10 per cent. This type of approach, which is complementary to top-down modelling, and the lessons learned from it can be applied to other capital- and energy-intensive industries such as primary steel production. It provides important information about what actions should be prioritised to ensure that carbon capture and storage can be applied without extra unnecessary shutdowns which would increase the overall cost of carbon dioxide mitigation and could delay action, increasing cumulative emissions as well.

  • Journal article
    Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, Graven H, Hoffman F, Ilyina T, John JG, Jung M, Kawamiya M, Koven C, Pongratz J, Raddatz T, Randerson J, Zaehle Set al., 2016,

    C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    , Geoscientific Model Development, Vol: 9, Pages: 2853-2880, ISSN: 1991-9603

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will re

  • Journal article
    Bin Mamat AMI, Martinez-Botas RF, Rajoo S, Hao L, Romagnoli Aet al., 2016,

    Design methodology of a low pressure turbine for waste heat recovery via electric turbocompounding

    , Applied Thermal Engineering, Vol: 107, Pages: 1166-1182, ISSN: 1873-5606

    This paper presents a design methodology of a high performance Low Pressure Turbine (LPT) for turbocompounding applications to be used in a 1.0 L “cost-effective, ultra-efficient heavily downsized gasoline engine for a small and large segment passenger car”. Under this assumption, the LPT was designed to recover the latent energy of discharged exhaust gases at low pressure ratios (1.05–1.3) and to drive a small electric generator with a maximum power output of 1.0 kW. The design speed was fixed at 50,000 rpm with a pressure ratio, PR of 1.08. Commercially available turbines are not suitable for this purpose due to the very low efficiencies experienced when operating in these pressure ratio ranges. By fixing all the LPT requirements, the turbine loss model was combined with the geometrical model to calculate preliminary LPT geometry. The LPT features a mixed-flow turbine with a cone angle of 40° and 9 blades, with an inlet blade angle at radius mean square of +20°. The exit-to-inlet area ratio value is approximately 0.372 which is outside of the conventional range indicating the novelty of the approach. A single passage Computational Fluid Dynamics (CFD) model was applied to optimize the preliminary LPT design by changing the inlet absolute angle. The investigation found the optimal inlet absolute angle was 77°. Turbine off-design performance was then predicted from single passage CFD model. A rapid prototype of the LPT was manufactured and tested in Imperial College turbocharger testing facility under steady-state and pulsating flow. The steady-state testing was conducted over speed parameter ranges from 1206 rpm/K0.5 to 1809 rpm/K0.5. The test results showed a typical flow capacity trend as a conventional radial turbine but the LPT had higher total-to-static efficiency, ηt-s in the lower pressure ratio regions. A maximum total-to-static efficiency, ηt-s of 0.758 at pressure ratio, PR ≈ 1.1 was found, no available turbines

  • Journal article
    Dessens O, Anandarajah G, Gambhir A, 2016,

    Limiting global warming to 2 °C: What do the latest mitigation studies tell us about costs, technologies and other impacts?

    , Energy Strategy Reviews, Vol: 13-14, Pages: 67-76, ISSN: 2211-467X

    There is now a wealth of model-based evidence on the technology choices, costs and other impacts (such as fossil fuel demand) associated with mitigation towards stringent climate targets. Results from over 900 hundred scenarios have been reviewed in the latest Intergovernmental Panel on Climate Change Assessment Report (IPCC AR5) including baseline scenarios under which no mitigation action is taken, as well as those under which different limits to global warming are targeted. A number of additional studies have been undertaken in order to assess the implications of global mitigation action. The objective of the paper is to provide a concise overview and comparison of major input assumptions and outputs of recent studies focused on mitigating to the most stringent targets explored, which means around the 2 °C level of global average temperature increase by 2100. The paper extracts key messages grouped into four pillars: mitigation costs, technology uncertainty, policy constraints, and co-benefits. The principal findings from this comparison are that, according to the models, mitigation to 2 °C is feasible, but delayed action, the absence or limited deployment of any of a number of key technologies (including nuclear, CCS, wind and solar), and limited progress on energy efficiency, all make mitigation more costly and in many models infeasible. Further, rapid mitigation following delayed action leads to potentially thousands of idle fossil fuel plants globally, posing distributional and political economy challenges.

  • Journal article
    McCarthy N, Chen R, Offer GJ, Thring Ret al., 2016,

    PTFE mapping in gas diffusion media for PEMFCs using fluorescence microscopy

    , International Journal of Hydrogen Energy, Vol: 41, Pages: 17631-17643, ISSN: 1879-3487

    Differentiating between the various polytetrafluoroethylene based structures inside polymer electrolyte membrane fuel cells with a degree of certainty is necessary to optimize manufacturing processes and to investigate possible degradation mechanisms. We have developed a novel method using fluorescence microscopy for distinguishing the origin and location of PTFE and/or Nafion® in Membrane Electrode assemblies and the gas diffusion media from different sources and stages of processing. Fluorescent material was successfully diffused into the PTFE based structures in the GDM by addition to the ‘ink’ precursor for both the microporous layer and the catalyst layer; this made it possible to map separately both layers in a way that has not been reported before. It was found that hot pressing of membrane coated structures resulted in physical dispersion of those layers away from the membrane into the GDM itself. This fluorescence technique should be of interest to membrane electrode assembly manufacturers and fuel cell developers and could be used to track the degradation of different PTFE structures independently in the future.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=278&limit=30&page=5&respub-action=search.html Current Millis: 1582021414620 Current Time: Tue Feb 18 10:23:34 GMT 2020